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What is VFIO?
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What is VFIO?

● A new user level driver framework for Linux

● Virtual Function I/O*

● Originally developed by Tom Lyon (Cisco)

● IOMMU-based DMA and interrupt isolation

● Full devices access (MMIO, I/O port, PCI config)

● Efficient interrupt mechanisms

● Modular IOMMU and device backends

* not limited to SR-IOV
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What does this mean for                  ?
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What does this mean for Qemu?

● A new device assignment interface
● Device assignment = userspace driver
● Unbinds device assignment from KVM
● Better security model

● For both devices and users

● Device isolation
● Architecture portability
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We already have KVM PCI device assignment
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We already have KVM PCI device assignment

● pci-assign has problems
● KVM is a hypervisor (not a device driver)
● Resource access is incompatible with secure boot
● IOMMU granularity is not assured
● Poor device ownership model
● x86 only
● PCI only
● KVM only



Alex Williamson8

How does VFIO solve these problems?
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KVM is not a device driver

● VFIO is a device driver
● supports modular device driver backends
● vfio-pci binds to non-bridge PCI devices
● pci-stub available as “no access” driver

● Allows admins to restrict access within a group

● Users cannot attempt to use in-service host devices
● Devices in use by users cannot be simultaneously 

claimed by other host drivers
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Resource access is incompatible with secure boot

● VFIO device backends provide secure resource 
access

● No device access without IOMMU isolation
● Integral to the interface

● Not outsourced to pci-sysfs

● Virtualized access to PCI config space
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IOMMU granularity is not assured

● VFIO uses IOMMU groups
● Allows the IOMMU driver to define both visibility and 

containment
● Solves devices hidden by bridges

● IOMMU cannot differentiate devices behind PCI bridge

● Solves peer-to-peer back channels
● All transactions required to reach IOMMU for translation
● For PCIe, ACS (Access Control Services) indicates support

● Result is better security
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IOMMU Group examples

IOMMU

PCIe-to-PCI

PCI PCI

PCIe
w/o ACS

PCIe
w/o ACS

PCIe
w/o ACS

PCIePCIe PCIe

PCIe
w/ ACS

PCIe
w/ ACS
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IOMMU Group examples

IOMMU

PCIe-to-PCI

PCI PCI

PCIe
w/o ACS

PCIe
w/o ACS

PCIe
w/o ACS

PCIePCIe PCIe

PCIe
w/ ACS

PCIe
w/ ACS

Redirect Redirect

Bridge ID
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Poor device ownership model

● VFIO moves ownership to the group level
● Access to device file grants ownership
● Ownership extends to all devices within the group
● All accesses through VFIO
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x86 only, PCI only, KVM only

● VFIO supports a modular IOMMU interface
● IOMMU API (type1) implemented
● POWER (SPAPR) under development

● VFIO supports a modular device interface
● PCI (vfio-pci) implemented

● VFIO has no KVM dependencies
● Used only for acceleration
● Non-x86 guests on x86 host work today

● ppc g3beige – Big Endian driver test platform!
● Any guest platform with PCI support
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Great, how do we use it?
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Requirements

● AMD-Vi or Intel VT-d capable hardware

● Linux 3.6+ host
● CONFIG_VFIO_IOMMU_TYPE1=m
● CONFIG_VFIO=m
● CONFIG_VFIO_PCI=m
● modprobe vfio-pci

● Qemu 92e1fb5e+ (1.3 development tree)
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● Device to assign:
01:10.0 Ethernet controller: Intel Corporation 82576 
Virtual Function (rev 01)

● Find the group:
$ readlink /sys/bus/pci/devices/0000:01:10.0/iommu_group
../../../../kernel/iommu_groups/15

● IOMMU Group = 15

● Check the devices in the group:
$ ls /sys/bus/pci/devices/0000:01:10.0/iommu_group/devices/
0000:01:10.0

Understanding IOMMU groups (easy example)
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Binding to vfio-pci

● Unbind from device driver
$ echo 0000:01:10.0 | sudo tee \
/sys/bus/pci/devices/0000:01:10.0/driver/unbind

● Find vendor & device ID
$ lspci -n -s 01:10.0
01:10.0 0200: 8086:10ca (rev 01)

● Bind to vfio-pci
$ echo 8086 10ca | sudo tee \
/sys/bus/pci/drivers/vfio-pci/new_id

● Check
$ ls /dev/vfio
15  vfio



Alex Williamson20

Start a guest

sudo qemu-system-x86_64 -m 2048 -hda rhel6vm \
-vga std -vnc :0 -net none -enable-kvm \
-device vfio-pci,host=01:10.0,id=net0
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Start a guest

sudo qemu-system-x86_64 -m 2048 -hda rhel6vm \
-vga std -vnc :0 -net none -enable-kvm \
-device vfio-pci,host=01:10.0,id=net0

● Why the sudo?
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Start a guest

sudo qemu-system-x86_64 -m 2048 -hda rhel6vm \
-vga std -vnc :0 -net none -enable-kvm \
-device vfio-pci,host=01:10.0,id=net0

● Why the sudo?

$ ulimit -l
64

● VFIO enforces user limits!

● VFIO security++

kilobytes megabytes
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Why is memory locked?

● For x86, all of guest memory is pinned on the host
● No guest visible IOMMU
● Devices can DMA to any guest memory address
● Guest memory can't be swapped if it's a DMA target
● We don't know what memory is a DMA target
● Pin it all!
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It's just a ulimit, increase it!

$ sudo -s
# chown $USER:$GROUP /dev/vfio/15
# chmod 660 /dev/vfio/vfio
# ulimit -l 2117632
# su - $USER
$ qemu-system-x86_64...
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Maths

$ sudo -s
# chown $USER:$GROUP /dev/vfio/15
# chmod 660 /dev/vfio/vfio
# ulimit -l 2117632
# su - $USER
$ qemu-system-x86_64...

‽
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● ulimit is padded: 2048 x 1024 = 2097152

● Both guest memory and devices are mapped

● Frame buffer, PCI MMIO BARs, etc.
● +20MB covers additional mappings for this config

● (2048 + 20) x 1024 = 2117632

● Deterministic?

● +512MB covers 32bit MMIO space (Q35?)

● What about 64bit MMIO or memory hotplug?

Maths
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Other options

● /etc/security/limits.conf

● Set the ulimit for a user
● libvirt will need to set limits when using vfio-pci

● Other?



Alex Williamson28

● Device to assign:
05:00.0 Ethernet controller: Broadcom Corporation NetXtreme 
BCM5755 Gigabit Ethernet PCI Express (rev 02)

Find the group:
$ readlink /sys/bus/pci/devices/0000:05:00.0/iommu_group
../../../../kernel/iommu_groups/8

● IOMMU Group = 8

● Check the devices in the group:
$ ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices/
0000:00:1c.0  0000:00:1c.4  0000:04:00.0  0000:05:00.0

Whoa

Understanding IOMMU groups (harder example)
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Why?

$ lspci -t -s 1c.
-[0000:00]-+-1c.0-[04]--
           \-1c.4-[05]--

$ lspci -s 1c.
00:1c.0 PCI bridge: Intel Corporation 82801JI
          (ICH10 Family) PCI Express Root Port 1
00:1c.4 PCI bridge: Intel Corporation 82801JI
          (ICH10 Family) PCI Express Root Port 5

Device 1c is a multifunction device that does not support 
PCI ACS control

● Devices 04:00.0 & 05:00.0 can potentially do peer-to-
peer DMA bypassing the IOMMU

● IOMMU Groups recognize they are not isolated
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Can we still use it?

for i in $(ls /sys/kernel/iommu_groups/8/devices/); do
  echo $i | sudo tee \
    /sys/kernel/iommu_groups/8/devices/$i/driver/unbind
  VEN=$(cat /sys/kernel/iommu_groups/8/devices/$i/vendor)
  DEV=$(cat /sys/kernel/iommu_groups/8/devices/$i/device)
  echo $VEN $DEV | sudo tee \
    /sys/bus/pci/drivers/vfio-pci/new_id
Done

● Attach all the devices to vfio-pci

● Ownership is based on group

● Unused devices are held by vfio-pci for isolation

● Advanced users: VFIO also allows group members to 
be assigned to pci-stub or no driver to prevent user 
access.  pci-stub strongly preferred.
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What about performance?

● PCI config space
● Not performance critical
● vfio-pci & pci-assign are equivalent

● I/O port access
● Not used by high performance devices
● vfio-pci & pci-assign are equivalent

● MMIO region access
● Both vfio-pci & pci-assign directly map to VM
● vfio-pci & pci-assign are equivalent
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What about performance? (cont)

● Interrupts
● pci-assign: KVM interrupt handler, posted to guest
● vfio-pci: VFIO interrupt handler connected to KVM irqfd
● Very low overhead VFIO → KVM signaling
● Testing shows vfio-pci has an advantage*

● Likely from non-threaded vs threaded interrupt handler

● Preliminary data from HP on 10G NIC is promising

*netperf TCP_RR (igbvf, e1000e, tg3)
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Device support

● Most commercial use of device assignment?
● NICs
● HBAs

● Most requested hobbyist/enthusiast device?
● VGA
● Video encoders/capture
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Why is VGA so hard?

● Legacy I/O ranges

● MMIO: 0xa0000 – 0xbffff

● I/O port: 0x3c0 – 0x3df

● Routing controlled through host chipset
● For every R/W to regions, switch host routing, access, restore
● Host use of VGA arbiter still evolving

● ROM dependencies

● ROM initializes the device (primary head or Linux)
● Can bypass virtualized access paths (1:1 mapping)
● Accessibility problems
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Why is VGA so hard? (cont)

● Driver

● Companion device & chipset dependencies
● Black box

● Qemu

● Emulated VGA is not easy to remove
● -nographics is not sufficient (getting better?)

● Bus topology for multiple graphics cards
● BIOS/Qemu

● Greatly improved to support large framebuffers
● But not multiple
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Call to action

● Please test & use VFIO
● Host Linux kernel 3.6+
● Qemu 1.3+ & current development tree

● Needed
● libvirt & virt-manager support
● Test infrastructure
● Error handling (AER)
● VGA support
● Power management
● New host platform support
● Hardware vendors: Support PCI ACS!
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Questions?



Alex Williamson38

Thanks!
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