
Alex Williamson1

VFIO: A user's perspective

Alex Williamson
alex.williamson@redhat.com
November 8th, 2012

KVM Forum 2012

Alex Williamson2

What is VFIO?

Alex Williamson3

What is VFIO?

● A new user level driver framework for Linux

● Virtual Function I/O*

● Originally developed by Tom Lyon (Cisco)

● IOMMU-based DMA and interrupt isolation

● Full devices access (MMIO, I/O port, PCI config)

● Efficient interrupt mechanisms

● Modular IOMMU and device backends

* not limited to SR-IOV

Alex Williamson4

What does this mean for ?

Alex Williamson5

What does this mean for Qemu?

● A new device assignment interface
● Device assignment = userspace driver
● Unbinds device assignment from KVM
● Better security model

● For both devices and users

● Device isolation
● Architecture portability

Alex Williamson6

We already have KVM PCI device assignment

Alex Williamson7

We already have KVM PCI device assignment

● pci-assign has problems
● KVM is a hypervisor (not a device driver)
● Resource access is incompatible with secure boot
● IOMMU granularity is not assured
● Poor device ownership model
● x86 only
● PCI only
● KVM only

Alex Williamson8

How does VFIO solve these problems?

Alex Williamson9

KVM is not a device driver

● VFIO is a device driver
● supports modular device driver backends
● vfio-pci binds to non-bridge PCI devices
● pci-stub available as “no access” driver

● Allows admins to restrict access within a group

● Users cannot attempt to use in-service host devices
● Devices in use by users cannot be simultaneously

claimed by other host drivers

Alex Williamson10

Resource access is incompatible with secure boot

● VFIO device backends provide secure resource
access

● No device access without IOMMU isolation
● Integral to the interface

● Not outsourced to pci-sysfs

● Virtualized access to PCI config space

Alex Williamson11

IOMMU granularity is not assured

● VFIO uses IOMMU groups
● Allows the IOMMU driver to define both visibility and

containment
● Solves devices hidden by bridges

● IOMMU cannot differentiate devices behind PCI bridge

● Solves peer-to-peer back channels
● All transactions required to reach IOMMU for translation
● For PCIe, ACS (Access Control Services) indicates support

● Result is better security

Alex Williamson12

IOMMU Group examples

IOMMU

PCIe-to-PCI

PCI PCI

PCIe
w/o ACS

PCIe
w/o ACS

PCIe
w/o ACS

PCIePCIe PCIe

PCIe
w/ ACS

PCIe
w/ ACS

Alex Williamson13

IOMMU Group examples

IOMMU

PCIe-to-PCI

PCI PCI

PCIe
w/o ACS

PCIe
w/o ACS

PCIe
w/o ACS

PCIePCIe PCIe

PCIe
w/ ACS

PCIe
w/ ACS

Redirect Redirect

Bridge ID

Alex Williamson14

Poor device ownership model

● VFIO moves ownership to the group level
● Access to device file grants ownership
● Ownership extends to all devices within the group
● All accesses through VFIO

Alex Williamson15

x86 only, PCI only, KVM only

● VFIO supports a modular IOMMU interface
● IOMMU API (type1) implemented
● POWER (SPAPR) under development

● VFIO supports a modular device interface
● PCI (vfio-pci) implemented

● VFIO has no KVM dependencies
● Used only for acceleration
● Non-x86 guests on x86 host work today

● ppc g3beige – Big Endian driver test platform!
● Any guest platform with PCI support

Alex Williamson16

Great, how do we use it?

Alex Williamson17

Requirements

● AMD-Vi or Intel VT-d capable hardware

● Linux 3.6+ host
● CONFIG_VFIO_IOMMU_TYPE1=m
● CONFIG_VFIO=m
● CONFIG_VFIO_PCI=m
● modprobe vfio-pci

● Qemu 92e1fb5e+ (1.3 development tree)

Alex Williamson18

● Device to assign:
01:10.0 Ethernet controller: Intel Corporation 82576
Virtual Function (rev 01)

● Find the group:
$ readlink /sys/bus/pci/devices/0000:01:10.0/iommu_group
../../../../kernel/iommu_groups/15

● IOMMU Group = 15

● Check the devices in the group:
$ ls /sys/bus/pci/devices/0000:01:10.0/iommu_group/devices/
0000:01:10.0

Understanding IOMMU groups (easy example)

Alex Williamson19

Binding to vfio-pci

● Unbind from device driver
$ echo 0000:01:10.0 | sudo tee \
/sys/bus/pci/devices/0000:01:10.0/driver/unbind

● Find vendor & device ID
$ lspci -n -s 01:10.0
01:10.0 0200: 8086:10ca (rev 01)

● Bind to vfio-pci
$ echo 8086 10ca | sudo tee \
/sys/bus/pci/drivers/vfio-pci/new_id

● Check
$ ls /dev/vfio
15 vfio

Alex Williamson20

Start a guest

sudo qemu-system-x86_64 -m 2048 -hda rhel6vm \
-vga std -vnc :0 -net none -enable-kvm \
-device vfio-pci,host=01:10.0,id=net0

Alex Williamson21

Start a guest

sudo qemu-system-x86_64 -m 2048 -hda rhel6vm \
-vga std -vnc :0 -net none -enable-kvm \
-device vfio-pci,host=01:10.0,id=net0

● Why the sudo?

Alex Williamson22

Start a guest

sudo qemu-system-x86_64 -m 2048 -hda rhel6vm \
-vga std -vnc :0 -net none -enable-kvm \
-device vfio-pci,host=01:10.0,id=net0

● Why the sudo?

$ ulimit -l
64

● VFIO enforces user limits!

● VFIO security++

kilobytes megabytes

Alex Williamson23

Why is memory locked?

● For x86, all of guest memory is pinned on the host
● No guest visible IOMMU
● Devices can DMA to any guest memory address
● Guest memory can't be swapped if it's a DMA target
● We don't know what memory is a DMA target
● Pin it all!

Alex Williamson24

It's just a ulimit, increase it!

$ sudo -s
chown $USER:$GROUP /dev/vfio/15
chmod 660 /dev/vfio/vfio
ulimit -l 2117632
su - $USER
$ qemu-system-x86_64...

Alex Williamson25

Maths

$ sudo -s
chown $USER:$GROUP /dev/vfio/15
chmod 660 /dev/vfio/vfio
ulimit -l 2117632
su - $USER
$ qemu-system-x86_64...

‽

Alex Williamson26

● ulimit is padded: 2048 x 1024 = 2097152

● Both guest memory and devices are mapped

● Frame buffer, PCI MMIO BARs, etc.
● +20MB covers additional mappings for this config

● (2048 + 20) x 1024 = 2117632

● Deterministic?

● +512MB covers 32bit MMIO space (Q35?)

● What about 64bit MMIO or memory hotplug?

Maths

Alex Williamson27

Other options

● /etc/security/limits.conf

● Set the ulimit for a user
● libvirt will need to set limits when using vfio-pci

● Other?

Alex Williamson28

● Device to assign:
05:00.0 Ethernet controller: Broadcom Corporation NetXtreme
BCM5755 Gigabit Ethernet PCI Express (rev 02)

Find the group:
$ readlink /sys/bus/pci/devices/0000:05:00.0/iommu_group
../../../../kernel/iommu_groups/8

● IOMMU Group = 8

● Check the devices in the group:
$ ls /sys/bus/pci/devices/0000:05:00.0/iommu_group/devices/
0000:00:1c.0 0000:00:1c.4 0000:04:00.0 0000:05:00.0

Whoa

Understanding IOMMU groups (harder example)

Alex Williamson29

Why?

$ lspci -t -s 1c.
-[0000:00]-+-1c.0-[04]--
 \-1c.4-[05]--

$ lspci -s 1c.
00:1c.0 PCI bridge: Intel Corporation 82801JI
 (ICH10 Family) PCI Express Root Port 1
00:1c.4 PCI bridge: Intel Corporation 82801JI
 (ICH10 Family) PCI Express Root Port 5

Device 1c is a multifunction device that does not support
PCI ACS control

● Devices 04:00.0 & 05:00.0 can potentially do peer-to-
peer DMA bypassing the IOMMU

● IOMMU Groups recognize they are not isolated

Alex Williamson30

Can we still use it?

for i in $(ls /sys/kernel/iommu_groups/8/devices/); do
 echo $i | sudo tee \
 /sys/kernel/iommu_groups/8/devices/$i/driver/unbind
 VEN=$(cat /sys/kernel/iommu_groups/8/devices/$i/vendor)
 DEV=$(cat /sys/kernel/iommu_groups/8/devices/$i/device)
 echo $VEN $DEV | sudo tee \
 /sys/bus/pci/drivers/vfio-pci/new_id
Done

● Attach all the devices to vfio-pci

● Ownership is based on group

● Unused devices are held by vfio-pci for isolation

● Advanced users: VFIO also allows group members to
be assigned to pci-stub or no driver to prevent user
access. pci-stub strongly preferred.

Alex Williamson31

What about performance?

● PCI config space
● Not performance critical
● vfio-pci & pci-assign are equivalent

● I/O port access
● Not used by high performance devices
● vfio-pci & pci-assign are equivalent

● MMIO region access
● Both vfio-pci & pci-assign directly map to VM
● vfio-pci & pci-assign are equivalent

Alex Williamson32

What about performance? (cont)

● Interrupts
● pci-assign: KVM interrupt handler, posted to guest
● vfio-pci: VFIO interrupt handler connected to KVM irqfd
● Very low overhead VFIO → KVM signaling
● Testing shows vfio-pci has an advantage*

● Likely from non-threaded vs threaded interrupt handler

● Preliminary data from HP on 10G NIC is promising

*netperf TCP_RR (igbvf, e1000e, tg3)

Alex Williamson33

Device support

● Most commercial use of device assignment?
● NICs
● HBAs

● Most requested hobbyist/enthusiast device?
● VGA
● Video encoders/capture

Alex Williamson34

Why is VGA so hard?

● Legacy I/O ranges

● MMIO: 0xa0000 – 0xbffff

● I/O port: 0x3c0 – 0x3df

● Routing controlled through host chipset
● For every R/W to regions, switch host routing, access, restore
● Host use of VGA arbiter still evolving

● ROM dependencies

● ROM initializes the device (primary head or Linux)
● Can bypass virtualized access paths (1:1 mapping)
● Accessibility problems

Alex Williamson35

Why is VGA so hard? (cont)

● Driver

● Companion device & chipset dependencies
● Black box

● Qemu

● Emulated VGA is not easy to remove
● -nographics is not sufficient (getting better?)

● Bus topology for multiple graphics cards
● BIOS/Qemu

● Greatly improved to support large framebuffers
● But not multiple

Alex Williamson36

Call to action

● Please test & use VFIO
● Host Linux kernel 3.6+
● Qemu 1.3+ & current development tree

● Needed
● libvirt & virt-manager support
● Test infrastructure
● Error handling (AER)
● VGA support
● Power management
● New host platform support
● Hardware vendors: Support PCI ACS!

Alex Williamson37

Questions?

Alex Williamson38

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

