
Keystone Enclave
An Open-Source Secure Enclave for RISC-V

Dayeol Lee1,2, David Kohlbrenner, Kevin Cheang1, Cameron Rasmussen1,

Kevin Laeufer1, Ian Fang, Akash Khosla, Chia-Che Tsai2, Sanjit Seshia1,

Dawn Song2,3, and Krste Asanovic1,2

University of California, Berkeley ※

Collaborators: Ilia Lebedev4, and Srinivas Devadas4

4 3

※All authors are affiliated with the UCB

2 1

What is a Secure Enclave?

OS

Applications

Trustworthy

Hardware

User

Program

and Data

Enclave contents

Integrity Confidentiality

Remote

Attestation

Secure Enclave as a Cornerstone Security Primitive

● Strong security capabilities

○ Authenticate itself (device)

○ Authenticate software

○ Guarantee the integrity and privacy of remote execution

● A cornerstone for building new security applications

○ Confidential computing in the cloud (e.g., machine learning)

○ Secure IoT sensor network

3

Why do we need an Open-Source Enclave?

● A Lot of Challenges for Enclaves

4

● Existing enclave systems are proprietary and difficult to experiment with

○ Closed-source commercial hardware (e.g., Intel SGX, ARM TrustZone)

○ Lack of good research infrastructure

○ Hardware vulnerabilities: Intel SGX - ForeShadow (USENIX’18), AMD SEV - SEVered

(EuroSec’18)

 ○ Side channel attacks and physical attacks

○ Important questions: do patches really fix the problem? Are there any other issues?

Open Source Design

• Provides transparency & enables high assurance

• Builds a community to help people work on the same problems

Keystone Enclave

5

Keystone: Open Framework for Secure Enclaves

6

● The First Full-Stack Open-Source Enclave for Minimal Requirements

○ Memory isolation, secure bootstrapping, remote attestation, …

● Isolation only with Standard RISC-V Primitives

○ Physical Memory Protection (PMP)

○ RISC-V Privileged ISA (U-, S-, and M-mode support)

● Open Framework: Built Modular & Portable for Easy Extension

○ Demonstrate in unmodified processors

○ Platform-specific threat models (cross-core side channels, untrusted external memory, etc)

○ Use various entropy sources/roots of trust in different platforms

○ Platform-agnostic isolated execution environment

○ Root of trust, security monitor, device driver, SDK, …

github.com/keystone-enclave

Earlier Work: Sanctum

● The First Enclave Design in RISC-V ISA

○ V. Costan et al., USENIX Security ’16

○ Proof of concept in C++

(https://github.com/pwnall/sanctum)

7

● Keystone and Sanctum

○ Keystone was built from scratch

○ Keystone shares many good practices from prior experiences of Sanctum

○ The primary goal of Keystone is to make an open end-to-end framework

● Non-standard Hardware Extension

○ PMP was introduced in 2017 (RISC-V Priv. v1.10)

https://github.com/pwnall/sanctum

What Hardware Do We Need?

● RISC-V Physical Memory Protection (PMP)

8

● An Entropy Source available at boot

● RISC-V U-, S-, and M-mode

● Root of Trust (preferably a crypto engine)

○ Measuring & signing the security monitor

○ Platform key store

Processor Package

ZSBL

Key store

Tamper-proof

hardware
Cores

Entropy Src.

Memory Encryption/Integrity

Devices

● (RISC-V) Device Gasket PMP (i.e., iopmp)

● If untrusted/external DRAM –

memory encryption/integrity engine

(not implemented yet)

Overview of Keystone

9

- Manages enclaves and PMP entries

- Multicore PMP synchronization

- Remote attestation

Keystone Security Monitor (SM)

- Stored in tamper-proof hardware

- Zeroth-stage bootloader (ZSBL)

- Tamper-proof platform key store

(preferably a crypto engine)

Silicon Root of Trust

- Untrusted app hosting an enclave

Host Application

- Untrusted device driver

- Allocates contiguous memory

- Provides the interface to user

Operating System

- A part of the enclave running in S-

mode

Enclave Runtime

- The application to execute in the

enclave

Enclave Application

T
ru

s
te

d
,
Is

o
la

te
d

U
n

tr
u

s
te

d

U
-m

o
d

e

S
-m

o
d

e

M
-m

o
d

e

ioctl() syscalls,

traps,…

SBI

measure,

sign

(T
ru

s
te

d
)

P
ri
v
ile

g
e

Keystone Overview (Simplified)

10

Keystone Security Monitor

Host

OS

Enclave

Runtime

Untrusted

Network

You

Remote Machine

PMP Root of Trust

measures

signs

measures

signs

Enclave

Application
Host

Application

controls

Keystone Overview (Simplified)

11

Keystone Security Monitor

Host

OS

Enclave

Runtime

Untrusted

Network

You

Remote Machine

PMP Root of Trust

measures

signs

measures

signs

Enclave

Application
Host

Application

controls

How does PMP work?

Memory Isolation with RISC-V PMP

● Physical Memory Protection (PMP)

o Special registers to control permissions of U- and S-mode

accesses to a specified memory region

o # of PMP entries can vary (e.g., default Rocket has 8)

o Statically prioritized by the order of entry indices

o Whitelist-based

o Dynamically configurable by M-mode

o Addressing modes: NAPOT (>= 4-bytes), Base/Bound

12

● How Keystone uses PMP

○ Top/bottom PMP entries are reserved for SM/OS

○ 1 PMP entry for each “active” enclave

○ NAPOT > 4KB (fragmentation / Linux buddy allocation)

Isolation via Switching PMP Permission Bits

13

not accessible

pmp0

pmp1

pmp2

pmpN

…

S/U accessibility

P
M

P
 e

n
tr

ie
s

accessible

DRAM(0x80000000-)

OS

111

address range rwx permissions

000

SM

P
ri
o

ri
ty

SM Boots OS Boots

Creating an Isolated Enclave

14

not accessible

pmp0

pmp1

pmp2

pmpN

…

S/U accessibility

P
M

P
 e

n
tr

ie
s

accessible

DRAM(0x80000000-)

OS

111

000

SM free pages

OS allocates a contiguous chunk of
memory using __get_free_pages()

P
T

RT ELF

OS initializes the free pages with the enclave page table,
and the enclave program (runtime + enclave application)

000

Enclave 1

Memory

SM sets PMP entry and finalizes the enclave hash

000

Enclave 2

Memory

OS can ask SM to create as many enclaves as the number
of remaining PMP entries

Executing an Enclave

15

not accessible

pmp0

pmp1

pmp2

pmpN

…

S/U accessibility

P
M

P
 e

n
tr

ie
s

accessible

DRAM(0x80000000-)

OS

111

000

SM free pages P
T

RT ELF

000

Enclave 1

Memory

000

Enclave 2

Memory

Executing an Enclave

16

not accessible

pmp0

pmp1

pmp2

pmpN

…

S/U accessibility

P
M

P
 e

n
tr

ie
s

accessible

DRAM(0x80000000-)

OS

111

000

SM free pages P
T

RT ELF

000

Enclave 1

Memory

000

Enclave 2

Memory

SM flips the PMP permission bits of pmp2 and pmpN to execute Enclave 2

Executing an Enclave

17

not accessible

pmp0

pmp1

pmp2

pmpN

…

S/U accessibility

P
M

P
 e

n
tr

ie
s

accessible

DRAM(0x80000000-)

OS

000

000

SM

000

Enclave 1

Memory

111

Enclave 2

Memory

SM flips the PMP permission bits of pmp2 and pmpN to execute Enclave 2

(Asynchronous) Exit and Resume

18

not accessible

pmp0

pmp1

pmp2

pmpN

…

S/U accessibility

P
M

P
 e

n
tr

ie
s

accessible

DRAM(0x80000000-)

OS

111

000

SM free pages P
T

RT ELF

000

Enclave 1

Memory

000

Enclave 2

Memory

The enclave can only exit by an SM SBI call.

The SM flips the permissions before entering the untrusted context.

Destroying an Enclave

19

not accessible

pmp0

pmp1

pmp2

pmpN

…

S/U accessibility

P
M

P
 e

n
tr

ie
s

accessible

DRAM(0x80000000-)

OS

111

000

SM free pages P
T

RT ELF

000

Enclave 1

Memory

Untrusted Shared Buffer

20

not accessible

pmp0

pmp1

pmp2

pmpN

…

S/U accessibility

P
M

P
 e

n
tr

ie
s

accessible

DRAM(0x80000000-)

OS

000

SM

000

Enclave 1

Memory

111

Enclave 2

Memory

The OS can allocate a shared buffer in OS memory

The SM uses the last PMP entry to allow the enclave to access the buffer.

111

Shared

Buffer

Keystone Overview Revisited

22

Keystone Security Monitor

Host

OS

Enclave

Runtime

Untrusted

Network

You

Remote Machine

PMP Root of Trust

measures

signs

measures

signs

Enclave

Application
Host

Application

controls

What is a Runtime?

S-Mode Enclave Runtime
● Provides Kernel-like Functionality

o Syscalls, traps

o thread and page table management

23

● Reusability

o Compatible with multiple user

programs

o Can act as a shield system

(e.g., Haven, Graphene) in SGX

● Useful Layer of Abstraction

o Least privilege of U-mode code

o Additional functionality without

complicating the SM

o SM < 2K LoC + 5K LoC crypto lib.

Keystone Overview Revisited

24

Keystone Security Monitor

Host

OS

Enclave

Runtime

Untrusted

Network

You

Remote Machine

PMP Root of Trust

measures

signs

measures

signs

Enclave

Application
Host

Application

controls

How to implement?

Silicon Root of Trust

● Tamper-proof hardware that cryptographically hashes the security monitor,

provisions an attestation key, and signs them with device’s secret key.

25

● Various ways to implement the root of trust

○ Various entropy sources, various platform key store, and implementation of the crypto engine

● Keystone uses Sanctum’s root of trust which uses ECDSA and SHA-3

Keystone Overview Revisited

26

Keystone Security Monitor

Host

OS

Enclave

Runtime

Untrusted

Network

You

Remote Machine

PMP Root of Trust

measures

signs

measures

signs

Enclave

Application
Host

Application

controls

Secret

Data

MITM

How does the enclave

authenticate itself and

create a secure channel?

Remote Attestation

● SM measures the enclave upon enclave creation

27 …

Measurement Layout The Full Process of Attestation

● Enclave may bind a key to the enclave report

● SM signs the enclave report and hands it (+ SM report) to the user

Project Status

● Testable in Various Platforms

30

○ Latest RISC-V QEMU: functionality test, development

○ Latest FireSim (v1.4.0): performance analysis, hardware modification

○ SiFive Unleashed: runs on a real quadcore in-order processor!

● Contributions Needed!

○ Building software stack: more use cases, libraries, edge compiler, …

○ Adding software/hardware extensions

e.g., demand paging, memory encryption/integrity, multithreading, CMA integration, …

● Ongoing Efforts

○ Formal verification of PMP-based security monitor

○ Mitigating cache side-channel attacks using platform features

Project Links

● Deployment:

○ QEMU: https://github.com/keystone-enclave/keystone

○ FireSim: https://github.com/keystone-enclave/keystone-firesim

○ SiFive Unleashed: https://github.com/keystone-enclave/keystone-hifive-unleashed

● Keystone Repository:

○ Keystone-SDK: https://github.com/keystone-enclave/keystone-sdk

○ Device Driver: https://github.com/keystone-enclave/riscv-linux

○ Security Monitor: https://github.com/keystone-enclave/riscv-pk

○ A Simple Runtime: https://github.com/keystone-enclave/keystone-runtime

○ Demo: https://github.com/keystone-enclave/keystone-demo

● Documentation (more coming):

○ Website/Blog: https://keystone-enclave.org

○ Development Docs: https://docs.keystone-enclave.org

31

https://github.com/keystone-enclave/keystone
https://github.com/keystone-enclave/keystone
https://github.com/keystone-enclave/keystone
https://github.com/keystone-enclave/keystone-firesim
https://github.com/keystone-enclave/keystone-firesim
https://github.com/keystone-enclave/keystone-firesim
https://github.com/keystone-enclave/keystone-firesim
https://github.com/keystone-enclave/keystone-firesim
https://github.com/keystone-enclave/keystone-hifive-unleashed
https://github.com/keystone-enclave/keystone-hifive-unleashed
https://github.com/keystone-enclave/keystone-hifive-unleashed
https://github.com/keystone-enclave/keystone-hifive-unleashed
https://github.com/keystone-enclave/keystone-hifive-unleashed
https://github.com/keystone-enclave/keystone-hifive-unleashed
https://github.com/keystone-enclave/keystone-hifive-unleashed
https://github.com/keystone-enclave/keystone-sdk
https://github.com/keystone-enclave/keystone-sdk
https://github.com/keystone-enclave/keystone-sdk
https://github.com/keystone-enclave/keystone-sdk
https://github.com/keystone-enclave/keystone-sdk
https://github.com/keystone-enclave/riscv-linux
https://github.com/keystone-enclave/riscv-linux
https://github.com/keystone-enclave/riscv-linux
https://github.com/keystone-enclave/riscv-linux
https://github.com/keystone-enclave/riscv-linux
https://github.com/keystone-enclave/riscv-pk
https://github.com/keystone-enclave/riscv-pk
https://github.com/keystone-enclave/riscv-pk
https://github.com/keystone-enclave/riscv-pk
https://github.com/keystone-enclave/riscv-pk
https://github.com/keystone-enclave/keystone-runtime
https://github.com/keystone-enclave/keystone-runtime
https://github.com/keystone-enclave/keystone-runtime
https://github.com/keystone-enclave/keystone-runtime
https://github.com/keystone-enclave/keystone-runtime
https://github.com/keystone-enclave/keystone-demo
https://github.com/keystone-enclave/keystone-demo
https://github.com/keystone-enclave/keystone-demo
https://github.com/keystone-enclave/keystone-demo
https://github.com/keystone-enclave/keystone-demo
https://keystone-enclave.org/
https://keystone-enclave.org/
https://keystone-enclave.org/
https://docs.keystone-enclave.org/
https://docs.keystone-enclave.org/
https://docs.keystone-enclave.org/

Demo

32

Trusted First Party

Remote machine (SiFive Unleashed Boar d)

EnclaveUntrusted
Host

WordCount

Shared

Buffer
libsodium

Security Monitor

attestation

report w/ DHreport w/ DHverify(report);

establish_channel();

A Remote Enclave with Secure Channel

33

● SiFive Unleashed board + simulated non-standard hardware

○ Root of trust: Modified FU540 FSBL with hard-coded device key

● Successfully ported libsodium for ECDH Key Exchange

 x86_64

34

Conclusion

● Keystone: an Open-Source Full-Stack Enclave for RISC-V

○ Runs on standard RISC-V cores

○ Modular design for better extensibility & portability

● Use Cases

○ Secure hardware research (e.g., LLC side-channel defense w/ way partitioning + PMP)

○ Building secure systems (e.g., Secure IoT network)

● Opens up Research Opportunities around Hardware Security

○ Formal Verification of PMP and Security Monitor Implementation

○ Performance Analysis

○ Defending Side Channels & Physical Attacks

○ Multi-level Security (MLS) for Sensitive Data Analytics

35

keystone-enclave.org

Thank You!

36

Dayeol Lee (dayeol@Berkeley.edu)

David Kohlbrenner (dkohlbre@berkeley.edu)

Forum (keystone-enclave@googlegroups.com)

mailto:dayeol@Berkeley.edu
mailto:dkohlbre@berkeley.edu
mailto:keystone-enclave@googlegroups.com
mailto:keystone-enclave@googlegroups.com
mailto:keystone-enclave@googlegroups.com

