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Secure Enclave as a Cornerstone Security Primitive 

● Strong security capabilities 

○ Authenticate itself (device) 

○ Authenticate software 

○ Guarantee the integrity and privacy of remote execution 

● A cornerstone for building new security applications 

○ Confidential computing in the cloud (e.g., machine learning) 

○ Secure IoT sensor network 
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Why do we need an Open-Source Enclave? 

● A Lot of Challenges for Enclaves 
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● Existing enclave systems are proprietary and difficult to experiment with 

○ Closed-source commercial hardware (e.g., Intel SGX, ARM TrustZone) 

○ Lack of good research infrastructure 

○ Hardware vulnerabilities: Intel SGX - ForeShadow (USENIX’18), AMD SEV - SEVered 

(EuroSec’18) 

 ○ Side channel attacks and physical attacks 

○ Important questions: do patches really fix the problem? Are there any other issues? 

Open Source Design 

• Provides transparency & enables high assurance 

• Builds a community to help people work on the same problems 



Keystone Enclave 
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Keystone: Open Framework for Secure Enclaves 
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● The First Full-Stack Open-Source Enclave for Minimal Requirements 

○ Memory isolation, secure bootstrapping, remote attestation, … 

● Isolation only with Standard RISC-V Primitives 

○ Physical Memory Protection (PMP) 

○ RISC-V Privileged ISA (U-, S-, and M-mode support) 

● Open Framework: Built Modular & Portable for Easy Extension 

○ Demonstrate in unmodified processors 

○ Platform-specific threat models (cross-core side channels, untrusted external memory, etc) 

○ Use various entropy sources/roots of trust in different platforms 

○ Platform-agnostic isolated execution environment 

○ Root of trust, security monitor, device driver, SDK, …  

github.com/keystone-enclave 



Earlier Work: Sanctum 

● The First Enclave Design in RISC-V ISA 

○ V. Costan et al., USENIX Security ’16 

○ Proof of concept in C++ 

(https://github.com/pwnall/sanctum) 
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● Keystone and Sanctum 

○ Keystone was built from scratch 

○ Keystone shares many good practices from prior experiences of Sanctum 

○ The primary goal of Keystone is to make an open end-to-end framework 

● Non-standard Hardware Extension 

○ PMP was introduced in 2017 (RISC-V Priv. v1.10) 

https://github.com/pwnall/sanctum


What Hardware Do We Need? 

● RISC-V Physical Memory Protection (PMP) 
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● An Entropy Source available at boot 

● RISC-V U-, S-, and M-mode 

● Root of Trust (preferably a crypto engine) 

○ Measuring & signing the security monitor 

○ Platform key store  

Processor Package 

ZSBL 

Key store 

Tamper-proof 

hardware 
Cores 

Entropy Src. 

Memory Encryption/Integrity 

Devices 

● (RISC-V) Device Gasket PMP (i.e., iopmp)  

 

● If untrusted/external DRAM –  

memory encryption/integrity engine  

(not implemented yet) 



Overview of Keystone 
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- Manages enclaves and PMP entries 

- Multicore PMP synchronization 

- Remote attestation 

Keystone Security Monitor (SM) 

- Stored in tamper-proof hardware 

- Zeroth-stage bootloader (ZSBL) 

- Tamper-proof platform key store  

(preferably a crypto engine) 

Silicon Root of Trust 

- Untrusted app hosting an enclave 

Host Application 

- Untrusted device driver 

- Allocates contiguous memory 

- Provides the interface to user 

Operating System 

- A part of the enclave running in S-

mode 

Enclave Runtime 

- The application to execute in the 

enclave 

Enclave Application 
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Keystone Overview (Simplified) 
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Keystone Overview (Simplified) 
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How does PMP work? 



Memory Isolation with RISC-V PMP 

● Physical Memory Protection (PMP) 

o Special registers to control permissions of U- and S-mode 

accesses to a specified memory region 

o # of PMP entries can vary (e.g., default Rocket has 8) 

o Statically prioritized by the order of entry indices 

o Whitelist-based 

o Dynamically configurable by M-mode 

o Addressing modes: NAPOT (>= 4-bytes), Base/Bound 
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● How Keystone uses PMP 

○ Top/bottom PMP entries are reserved for SM/OS 

○ 1 PMP entry for each “active” enclave 

○ NAPOT > 4KB (fragmentation / Linux buddy allocation) 



Isolation via Switching PMP Permission Bits  
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Creating an Isolated Enclave 
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Executing an Enclave 
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Executing an Enclave 
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Executing an Enclave 
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(Asynchronous) Exit and Resume 
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Destroying an Enclave 
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Untrusted Shared Buffer 
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Keystone Overview Revisited 
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S-Mode Enclave Runtime 
● Provides Kernel-like Functionality 

o Syscalls, traps 

o thread and page table management 
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● Reusability 

o Compatible with multiple user 

programs 

o Can act as a shield system  

(e.g., Haven, Graphene) in SGX 

● Useful Layer of Abstraction  

o Least privilege of U-mode code 

o Additional functionality without 

complicating the SM 

o SM < 2K LoC + 5K LoC crypto lib. 



Keystone Overview Revisited 
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Silicon Root of Trust 

● Tamper-proof hardware that cryptographically hashes the security monitor, 

provisions an attestation key, and signs them with device’s secret key. 
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● Various ways to implement the root of trust 

○ Various entropy sources, various platform key store, and implementation of the crypto engine 

● Keystone uses Sanctum’s root of trust which uses ECDSA and SHA-3 



Keystone Overview Revisited 
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Remote Attestation  

● SM measures the enclave upon enclave creation 

27 … 

Measurement Layout The Full Process of Attestation 

● Enclave may bind a key to the enclave report 

● SM signs the enclave report and hands it (+ SM report) to the user 



Project Status 

● Testable in Various Platforms 
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○ Latest RISC-V QEMU: functionality test, development 

○ Latest FireSim (v1.4.0): performance analysis, hardware modification 

○ SiFive Unleashed: runs on a real quadcore in-order processor! 

● Contributions Needed! 

○ Building software stack: more use cases, libraries, edge compiler, … 

○ Adding software/hardware extensions  

e.g., demand paging, memory encryption/integrity, multithreading,  CMA integration, …  

 

● Ongoing Efforts 

○ Formal verification of PMP-based security monitor 

○ Mitigating cache side-channel attacks using platform features 

 



Project Links 

● Deployment: 

○ QEMU:   https://github.com/keystone-enclave/keystone 

○ FireSim:  https://github.com/keystone-enclave/keystone-firesim 

○ SiFive Unleashed: https://github.com/keystone-enclave/keystone-hifive-unleashed 

● Keystone Repository: 

○ Keystone-SDK:  https://github.com/keystone-enclave/keystone-sdk 

○ Device Driver: https://github.com/keystone-enclave/riscv-linux 

○ Security Monitor:  https://github.com/keystone-enclave/riscv-pk 

○ A Simple Runtime:  https://github.com/keystone-enclave/keystone-runtime 

○ Demo:  https://github.com/keystone-enclave/keystone-demo 

● Documentation (more coming):   

○ Website/Blog: https://keystone-enclave.org 

○ Development Docs: https://docs.keystone-enclave.org 
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Demo 
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Trusted First Party

Remote machine (SiFive Unleashed Boar d)

EnclaveUntrusted
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WordCount
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Security Monitor

attestation

report w/ DHreport w/ DHverify(report);

establish_channel();

A Remote Enclave with Secure Channel 
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● SiFive Unleashed board + simulated non-standard hardware 

○ Root of trust: Modified FU540 FSBL with hard-coded device key 

● Successfully ported libsodium for ECDH Key Exchange 

 x86_64 
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Conclusion 

● Keystone: an Open-Source Full-Stack Enclave for RISC-V 

○ Runs on standard RISC-V cores 

○ Modular design for better extensibility & portability 

● Use Cases 

○ Secure hardware research (e.g., LLC side-channel defense w/ way partitioning + PMP) 

○ Building secure systems (e.g., Secure IoT network) 

● Opens up Research Opportunities around Hardware Security 

○ Formal Verification of PMP and Security Monitor Implementation 

○ Performance Analysis 

○ Defending Side Channels & Physical Attacks 

○ Multi-level Security (MLS) for Sensitive Data Analytics 
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Thank You! 
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Dayeol Lee (dayeol@Berkeley.edu) 

David Kohlbrenner (dkohlbre@berkeley.edu) 
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