by RISC-V°

The RISC-V Instruction Set Manual
Volume 1

Unprivileged Architecture

Version 20240411

Table of Contents

Preamble
Preface

1. Introduction

1.1. RISC-V Hardware Platform Terminology
1.2. RISC-V Software Execution Environments and Harts
1.3. RISC-V ISA Overview
1.4. Memory
1.5. Base Instruction-Length Encoding
1.5.1. Expanded Instruction-Length Encoding
1.6. Exceptions, Traps, and Interrupts
1.7. UNSPECIFIED Behaviors and Values
. RV32I Base Integer Instruction Set, Version 2.1
2.1. Programmers' Model for Base Integer ISA
2.2. Base Instruction Formats
2.3. Immediate Encoding Variants
2.4. Integer Computational Instructions
2.4.1. Integer Register-Immediate Instructions
2.4.2. Integer Register-Register Operations
2.4.3. NOP Instruction
2.5. Control Transfer Instructions
2.5.1. Unconditional Jumps
2.5.2. Conditional Branches
2.6. Load and Store Instructions
2.7. Memory Ordering Instructions
2.8. Environment Call and Breakpoints
2.9. HINT Instructions
. RV32E and RV64E Base Integer Instruction Sets, Version 2.0
3.1. RV32E and RV64E Programmers’ Model
3.2. RV32E and RV64E Instruction Set Encoding
. RV64I Base Integer Instruction Set, Version 2.1
4.1. Register State
4.2. Integer Computational Instructions
4.2.1. Integer Register-Immediate Instructions
4.2.2. Integer Register-Register Operations
4.3. Load and Store Instructions
4.4. HINT Instructions
. RV1281 Base Integer Instruction Set, Version 1.7
. "Zifencei" Extension for Instruction-Fetch Fence, Version 2.0
. "Zicsr", Extension for Control and Status Register (CSR) Instructions, Version 2.0
7.1. CSR Instructions
7.1.1. CSR Access Ordering

10

11

11
13
15
16

17
19
20
21
21
23
24
25
26
27
27
28
28
30
31
33
35
36
39
39
39
40
40
40
40
41
42
42
45
47
49
49
51

8. "Zicntr" and "Zihpm" Extensions for Counters, Version 2.0
8.1. "Zicntr" Extension for Base Counters and Timers
8.2. "Zihpm" Extension for Hardware Performance Counters
9. "Zihintntl" Extension for Non-Temporal Locality Hints, Version 1.0
10. "Zihintpause" Extension for Pause Hint, Version 2.0
11. "Zimop" Extension for May-Be-Operations, Version 1.0
11.1. "Zcmop" Compressed May-Be-Operations Extension, Version 1.0
12. "Zicond" Extension for Integer Conditional Operations, Version 1.0.0
12.1. Introduction
12.2. Zicond specification
12.3. Instructions (in alphabetical order)
12.3.1. czero.eqz
12.3.2. czero.nez
12.4. Usage examples
12.4.1. Instruction sequences
13. "M" Extension for Integer Multiplication and Division, Version 2.0
13.1. Multiplication Operations
13.2. Division Operations
13.3. Zmmul Extension, Version 1.0
14. "A" Extension for Atomic Instructions, Version 2.1
14.1. Specifying Ordering of Atomic Instructions
14.2. "Zalrsc" Extension for Load-Reserved/Store-Conditional Instructions
14.3. Eventual Success of Store-Conditional Instructions
14.4. "Zaamo" Extension for Atomic Memory Operations
15. "Zawrs" Extension for Wait-on-Reservation-Set instructions, Version 1.01
15.1. Wait-on-Reservation-Set Instructions
16. "Zacas" Extension for Atomic Compare-and-Swap (CAS) Instructions, Version 1.0.0
16.1. Word/Doubleword/Quadword CAS (AMOCAS.W/D/Q) Instructions
16.2. Additional AMO PMAs
17. "Zabha" Extension for Byte and Halfword Atomic Memory Operations, Version 1.0
17.1. Byte and Halfword Atomic Memory Operation Instructions
18. RVWMO Memory Consistency Model, Version 2.0
18.1. Definition of the RVWMO Memory Model
18.1.1. Memory Model Primitives
18.1.2. Syntactic Dependencies
18.1.3. Preserved Program Order
18.1.4. Memory Model Axioms
18.1.4.1. Load Value Axiom
18.1.4.2. Atomicity Axiom
18.1.4.3. Progress Axiom
18.2. CSR Dependency Tracking Granularity
18.3. Source and Destination Register Listings
19. "Ztso" Extension for Total Store Ordering, Version 1.0

53
53
55
57
61
62
63
64
64
64
65
65
67
67
68
69
69
69
70
72
72
72
76
78
81
81
83
83
88
89
89
91
91
91
93
94
95
95
95
95
95
96
102

20. "CMO" Extensions for Base Cache Management Operation ISA, Version 1.0.0................... 103

20.1. Pseudocode for insStruction SemMantiCS...cccciiieiiiiiiiiiiisisseiissssssscnnnnmmmmmmnmmmmmmmmmmemsmmmsmmsssssssssssssssss 103
D221\ J07Z00 1Y 0 T 11T o oS 103
20.3. BACKGIOUNG .ccuuuiiiiimuuniiermmmennnsssmmmmossssommesosssmmssssssssmsessssssmssssssssnssssssssnssssssssssssssssssssssssssssssssssssane 103
20.3.1. MemMOry and CACNES. . ciueeiiimmiommmmsmmmossmmosssmmossssmssssosssssosssssssssnsssssssssssssssssssssssssssssasssssssssnse 104
20.3.2. Cache-BloCK OPeratioNS ..cccuceemecemmmcremmoooesmoosssosssssossssosssssssssssssssssssssssossssssssssosssssssssssssssss 104
20.4. Coherent Agents and CaChesS . ..ccccceiiiiiuiiciiimmmmcinoimmmmsosemmmmossssmemosssssssssssssssssossssssssssssssssssssssssss 105
20.4.1. MemOry Ordering cecceeeeeeemeemmmmmiemiimmimmiiosmmmsmmsssssssssssssssssssnssnnssnssssnsssssssnsssssssssssssssssssssssssssssss 106
20.4.1.1. Preserved Program OFderccceeeeeeeieemmmmesocssmmmessssssmmesssssmmsssssssmsssssssssmsssssssssssssssssasssss 106
20.4.1.2. LOAA VAlUES «.cvviiuiiiiiimmnaemmmmmossssmmmcsssssmmmosssssmss 107
20.4.2. TraPS ceecerecosasessosssesssessssssssssssssssssssssssssssssssssssssnsssnssssss 107
20.4.2.1. Illegal Instruction and Virtual Instruction EXCEPLIONS ..ccccvvermmmmmmmemcoccsosssosmnmmmmmmmoosoncnes 107
20.4.2.2. Page Fault, Guest-Page Fault, and Access Fault EXCeptions.....cccccececeeeeemnnmmmemamooocanes 107
20.4.2.3. Address Misaligned EXCEPLIONS ..cccuiiiiiiiiiiiiiiiiiiiiiiimmimmsmssssssssssssossssssosssnsssnssssssssssssssnss 109
20.4.2.4. Breakpoint Exceptions and Debug Mode ENtry......ccccccceeeeeremmmmeemmmiccocceesesemmmmmmmmonossnes 109
20.4.2.5. HYPErviSOr EXTENSTON .ccvvuremieremmomommmomommoosemsoossssossssssssssssssssosssssssssssssssssssssssssssssssassssss 110
20.4.3. Effects on Constrain@d LR/SC LOOPS wuccevveeeermcemmmocemmmooosmosossmossssonssssosssssosssssssssssssssosssssoses 110
20.4.4. SOFtWAre DiSCOVEIY . .viiiiuuiiremmemicrrermmmmooeemmmmmomoenmmmsososnsmmssssnnsmsessssssmssssssssanssssssnsnsssssnsmnssssons 110
205, Coige] =N BSEIUS (RECISIS RIS | (Y Y o BCECOOo000000000CO0 111
20.6. EXEENSTONS ceviiiiiiiiiiiiiiiiieeiimiiimmmmmmssssssssssssssssssssssssssnss 113
20.6.1. Cache-Block Management INStrUCtiONS c.cccuuiiiiieeiiiemmmmmreimmmmmieemmmmmceeemmmmssesmmmmsssssmasssesns 113
20.6.2. Cache-Block Zero INSIrUCTIONS ...uuuiumiemmmmmmmemmimmiiimiiiiiimiiimiiiiiiiiiessmsssssssssssssssssssnsssssnsnssnnnnns 114
20.6.3. Cache-Block Prefetch INSTrUCTIONS .. ccciecicccmmmmmmmmmmmmmmmmmmmmmmmemimmmmmmmmmsiisssossosssssssssssssssssssses 115
20.7. INSTYIGHTONS + M. oeeeeeees REREER ooeeeecccccolBii M cosooosssosseessesciiiiihesssssses IEEM cassnasssssssssssssssssssssssssssssss EERED 115
D2 7 TR o o T X o = Y 115

D 00 o o T 20 1 D1 o 116

D2 70 T o o T T8 15 Y 116
D7\ T 0 T 2 o U 117

B2 T 05 TR 0] =Y o T N 118

B I8 TR 0 =1 = o X 118
20.7.7. PrEfOICIIW coiiiiiiiiiiiiiiiieiiiiieiiiieiiiieermooremsossessossssssssssssssssssssssssssasssnsssssssssssssssssssssssssssssssssssss 119
21. "F" Extension for Single-Precision Floating-Point, Version 2.2cccccccccvvvnunviiniiciicccnnnnnns 120
D2 T R = 13 (=] Y N 120
21.2. Floating-Point Control and Status REQISTEr....cccccuieeriericcmmmmmmmmmmmmmmmmmmmmemmmmmmmmmsmessmsssssssosssssssssssss 121
21.3. NaN Generation and Propagation.......cccceeeieeiieiiiiiiimiimsiiessosssssssssssssssssssnsssssssssssssssssssssssssssssssssss 123
D228 ST o T T} 31 F= A g g 123
21.5. Single-Precision Load and Store INStrUCTIONS cccccireiemmmmmmmmeicossssnssosmmmmmmmmmsoossssssssssssssssssssssssssssss 123
21.6. Single-Precision Floating-Point Computational INStruCtionscccceeeremmmmmmemecoccsseorersmmmmmmomoons 124
21.7. Single-Precision Floating-Point Conversion and Move Instructions.......ccccceeeeeeeenemmememcncococcenees 126
21.8. Single-Precision Floating-Point Compare INStruCtioNScceeeeeemmemmmmmmmmmmmmmmiemieeeeeemeossosssssssssssces 127
21.9. Single-Precision Floating-Point Classify INSIrUCtiON ..ccccvvieeiimiiccieiieeermmimmemmmicoosreeesensmmmmmmmmmconns 128
22, "D" Extension for Double-Precision Floating-Point, Version 2.2cccccccccevvvvunnnnneiciccccnnnnns 129

22.1. D REQISTEr STAtE wuuuiceieiiieiimmmmmmmmiioionsmososmmmmmmmmmsosssssssssssssmmsss 129

22.2. NaN Boxing Of NarroWer VAlUEScccceuuerermmmmorermmmmiomeemmmmosesmmmmssessmmmssssssmmmssssssssnssssssssnssssssnsans 129

22.3. Double-Precision Load and Store INStruCtioNS....cccceeeeeeiiccsccnsnnmmmmmmmmmmmmmmmmmmmmemeemmmmmsssssssssssssoses 130
22.4. Double-Precision Floating-Point Computational INStructionscccccccceeeeeeeeeeeeeeneeeciennneneeeneeees 130
22.5. Double-Precision Floating-Point Conversion and Move InStructionsccceeeieeeieeeiensieccscosees 131
22.6. Double-Precision Floating-Point Compare INStruCtionsccccceeeeesscssnmmemmmmmmmmmmemmmmmmmmmmmmmmmssnees 132
22.7. Double-Precision Floating-Point Classify INStruCtion......cccceeeeuecreeriemiieemmmmncneemmemcseenmmmoseesnanns 132
23. "Q" Extension for Quad-Precision Floating-Point, Version 2.2...........ccccccccvvriiiiiccinnnneeccccnnnns 133
23.1. Quad-Precision Load and Store INStrUCTiONSccccecccmmmmmmmmmmmmmmmmmmmmmmiemmmemmimsiismiessmsssssssssssssssses 133
23.2. Quad-Precision Computational INStrUCTiONS....ccceieeeermrmmmmmmmiciceoseeremmmmmmmmmmocosssssossssmmsssnssssssssses 133
23.3. Quad-Precision Convert and Move INStrUCHIONS c.ccevvviiiiiiiiiiiiiiiiiieiiimmiiemiessissssssssssssssossosnnsnnnnns 134
23.4. Quad-Precision Floating-Point Compare INStruCtionS......cccuueeeermemmieerimmmceeemmmmceeenmomosessmmmnoes 134
23.5. Quad-Precision Floating-Point Classify INStruCtionccccccueeeeeiiiiiiiiiiiiiiiiiiiiiiiiieiiceisssssssssosscnns 135
24. "Zfh" and "Zfhmin" Extensions for Half-Precision Floating-Point, Version 1.0 136
24.1. Half-Precision Load and Store INStrUCtIONS ..ccceevieimimmiiiiiiiiiiiiiiiiiemiimmiesmmssssssssssssssssssonsssnnssnssnes 136
24.2. Half-Precision Computational INStruCtioNS....cceeuuueceriieeeremimmmmmmmmiocomseesesrsmmmmmmmmosssssssosssssssssssncs 136
24.3. Half-Precision Conversion and Move INStruCtionScccuiiiiiiiiiiiiiiiiiiiiiiiiesiisssssssosssnnnonnennnnnnnnes 137
24.4. Half-Precision Floating-Point Compare INStruCtioNS....cccccererrmmmmmmmmmoscocosonosssmmmmmmmoososssssssssssssses 138
24.5. Half-Precision Floating-Point Classify INStruCtion......cccccceeeeerimmmmmmiiscccccenenenmmmmmemmiososcscosssssnnes 138
24.6. "Zfhmin" Standard Extension for Minimal Half-Precision Floating-Point.......cccccccceccccccnnnennnce 138
25, "BF16" Extensions for for BFloat16-precision Floating-Point, Version 1.0..........cccccccceeeunieee 140
25.7. INTrOAUCTION ceiiiiiiiiiiiiiiiiiiiiiiiiiiiessissssssssnsssnnnnnsnnnnnnnmnnsenssnnsssssmsssmsssosss 140
25.2. Intended AUIENCE cccciiieieeiecccinsssssssssssccssnsenncnnnnnnnnnsnsssnsssssssasssns 140
25.3. NUMDEr FOrMAT ciccuuiiiiiiiiiniiiiimiiiiiiimmiiiniiimmmenniememmiiiessommosssssmmsssssssnssssssssnsssssssssssssssssnssssssssnssssss 141
25.3.1. BF16 Operand FOrmMatccccceeeceeieiimmcemncemocemocesmcosmssnsssns 141
25.3.2. BF16 BENAVION cevviiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiesisssssssssssssssssssssssssssnssnsnss 142
25.3.2.1. SUbNOrmMal NUMDEIS: . .ccuiuiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiimmiieiieiensssssommmmemomsssssesssssssssmmnenssssses 142
D25 T0C 707257000 1 011101 3R 142
D25 0C 7078 JU 1V - 142
25.3.2.4. Scalar NaN BOXiNgG ccccceeieiieeiiemiemmmmsssossssssssssssnnnnnmmnnnnmnmmsmmmsssmmssmmsssssssssssssssssssssssssssssssss 143
25.3.2.5. ROUNAING MOUES:.cccciiiiiiiiiiiiiimmimmmmmmssssscssssssnnssnmmmnnnnnnssnnnnsnnsssssnssssssssssssssssssssssssssssssssss 143
25.3.2.6. Handling @XCEPTIONS wuucveriuueireemmmmiimermmmmioneemmmmomoonmmmossessmmssssssmmssssssssmsssssssmsssssssnsansssns 144

D25 T0C 707 T T g 1Y 144

D215 T4 SR =4 1= g T o g1 145
25.4.1. zfbfmin - Scalar BF16 CONVEITS c.cccuiiiiiimiiiiiiiimiiiiiiimmionisiemmsiessmmmossosssmmosssssmmosssssssmssssssssnne 145
25.4.2. Zvfbfmin - Vector BF16 CONVEItS....ccciiiiimiiiiiiimmicniiiimienesiemmnnsssmmossssssmmmsssssommossssssmmssssssssons 146
25.4.3. zvfbfwma - Vector BF16 widening Mul-addccceeeemmmmmiiicimmmmmeemmmmmmmmmmsosssssssssssmsmsmmsssssssssssss 147
25.5. INSTIUCTIONS ccuuuiuiiuiummmmmimmiminiiieiiiiiaeiieeiiestisiiessiossmesssssssssssssssssssssssssssssssssssssnnnnsnnsnsssssssssssssssssssssss 147
D25 T8 T TR {8 o1 73 147
D25 85 7070 {12 X o 1 148
25.5.3. VEINCVEDTIBFFW ceiiiiiiiiiiiiiiiiinnnniimiiiimiiiisosnnnnsssmmmmmmmmmocosssssssssssmmsmsssssssssssssssssssssssssssssssssssssnsns 149
25.5.4. VIWCVEDTIB.F.E.V coiiiiiiiiiiiiiiiiiiiiiiieeiiiiiiieeniiiicieenmenceesnmmmsssesmmmmssssssansssssnsmnsssssssmnssssssssnsssssnnns 150

D2 T0 78TOV AT 00 =T ol o 151

100 o= T'o) 07/ 152

26. "Zfa" Extension for Additional Floating-Point Instructions, Version 1.0..........cccccccevveeciinnnne 153

26.1. Load-Immediate INSTrUCTIONS .cccciiiiiiiiiiieiioiisnnnmmmmmmmmmmmmmmmmmmmmmmmmmmmsmmsssssssssssssssssssssssssssssssssssssns 153
26.2. Minimum and Maximum INStrUCTIONS c.ccceveieiiiiiiiiiimiiiiiiiiiiiiiiiiimmimssissssssssssssssssssssnssnnnnnnsensssssancs 154
26.3. Round-to-Integer INSTrUCTIONS ccccieeiieericrninmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmssosssessssssssssssssssssssssssssssssssssnns 155
26.4. Modular Convert-to-Integer INStrUCHIONcceuremmmmmmmmmmmmmmmmmmmmmmmmmmmmmemmmemmmommosmmmsmmssssssssssssssssssssnss 155
26.5. MOVE INSIIUCTIONS c.uuuiiiiiiiiiiiniiiiniimmiieiiiiiiiiiieiieiiiiiiississsiessaesssssssssssssssssssssssssnssnssnnsnnssnnsnsnnns 156
26.6. ComMPAarisSON INSTIUCTIONS cevvuieiuierimueemmmomemmieremmeesmmsessooosssmsssssnsssssossssssssssssssssssssssssssssssssssssnsoses 156

27. "Zfinx", "Zdinx", "Zhinx", "Zhinxmin" Extensions for Floating-Point in Integer Registers,

2= =3 T e T 158
27.1. Processing Of NarroWer VAlUESc.ceeeeeereemmemmmmmmmmmiiimmiemeimmiesmmommmssmmsssnss 158
2707004 N 158
27.3. Processing Of Wider ValUES ..cccccvveeeuiiciciiiimmommmmmmmmmmmsosssssosssmmsmsssnss 159
D2 S 1 159
27.5. ZNINXMIN tettiiiiiiiiiiiiiniionssossssssssssnnnnnnmnnsmnssnsnssnssssssssssmssnnnsnsnssnsnnns 159
27.6. Privileged Architecture IMpliCatioNs ...cccccceercmresnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmesmessmosmssssssssssssssssssssssssss 160

28. "C" Extension for Compressed Instructions, Version 2.0ccccccceeeeiceeeeeeeeereemeemmomenseeecenes 161
28.1. OVEIVIEW Leiiiiiiiiiiiiiiiiinsisosiosssosnnnnnnnnnsnnnnnmnsnmnnmmsssnsnsnnsnnnnnnns 161
28.2. Compressed INStruction FOIMALS c...cieeiieiereiimmmiiiermmmmomeemmomomoemmmmoomsemmmmsssosnssnsssosssnsssssssanssssnns 163
P8 HI¥Gad and StORENMSIGUCHIONS sesssssssssssssesnsancss MR ooreosessoesasssesscEREREENRERRRRRRORIRRRNS | SRR eRReaReeREEeS 164

28.3.1. Stack-Pointer-Based Loads and STOreSccccccummmmmmmmmmmmmmmmmmmmmimmmiemeesmeesmmsssssssssssssssssssssssns 165
28.3.2. Register-Based Loads and StOreSccceeueeeeremmmieemmmmmoseemmmmosieemmmmsososssmmsssssssmsssssssmssssssssans 167
28.4. Control Transfer INStrUCTIONS w.ccceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiesinssioosssssssssnnnmnmmennmsmmemsmmmmmmssossssssssssssss 168
28.5. Integer Computational INStrUCTIONS w.cccveiuiemiimiiiiiiiiiiiiiiiiiiiiiiiiiimiimsimssssssssssssssssssssnsnnsnsnsssnssnsnncs 169
28.5.1. Integer Constant-Generation INStrUCTiONSccccuiiiiiiiiiiiiiiiiiiiiiiiiiiiniisssossscsssosssnnonnnonnmnnnnnns 169
28.5.2. Integer Register-Immediate OPerationscceeecieeiiiiiiiiiiiiiiiiieiiiesissssssssssssssssssssnssssssonssnne 169
28.5.3. Integer Register-Register OPerationsccccuiceceieieeerrmmmmmmmmiomeoomoeeossmmmsssmmsssssssssssssssssassncs 171
28.5.4. Defined Illegal INSIrUCTION w.cciiiieiiimmmmmmmmmimoossossssmmmmmmmmmscss 172
28.5.5. NOP INSIUCTION ceriiiiiiiiiiiiiiiimmiinmmnmnssssssssossssnnnnnmnmmmmmmmmnmmsmmmmss 173
28.5.6. Breakpoint INSIrUCTION cccvvvieeeuiiicceeieeememmmmmmmmmmocoseoseessssmmsmmmsmsssssssssssssssssssssssssssssssssssssssnssns 173
28.6. Usage of C Instructions in LR/SC SEQUENCES .cccuvvrrrrmiiimiimimmiiiemiomimssmmssssssssssssssssssssssssssssssssssnss 173
28.7. HINT INSIIUCHIONS wecuviviiiiimmnicnmmmmmmmmmssssnmmmssmmsssssnnsssssssssssnnsssssssssssssssnsssssssssssssnsssssssssssssnssssssssss 173
28.8. RVC INStruction Set LiSTiNgS..cccceeeeeremmmmmmmmmmmsosssssssssmmmmmmmsosss 174

29. "Zc*" Extension for Code Size Reduction, Version 1.0.0ccccccccvvriiiiiieieeeieeeeeeeeeeeeeseeeeeeessens 178
291, ZC* OVEIVIEW. uuuuuuiuummmmmmmmmmmmmmmmmmmmmmmsmmmmsmssosssosssnsssssnnssssssssssssssssssssssssssss 178
D721 25 179
T A =N 179
D70 0|V 1V 179
DR T - U 180
29.6. ZCT (RV32 ONLY) teeieecimmmmmmmmimmmommmmmmmsmmmsssnnnmsssssssssssnnssssssssssssnsssssssssssssnssssssssssssssnssssssssssssssssssssss 180
D7 50 o o 180
2 T o o 180
29.9. ZCIMP teivrunvronorasennosnnsossosssossssssssssssssssssssssssssssssnsssnns 182

7R 1 72 o 1 0 0SSN 183

29.11. ZC INSTIUCTION OIS . uciiiiiiiiiiiremieemeemmeemmoemmesmmossmesemeessnssssosssesssesssesnnsssnsesssssssesssssssnnesnsssns 183

29.12. ZCh INSIFUCTIONS ceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimsimsssssssssssssssssssnsnnnssnsnnssssssnsssssssssssssssssssssssssssssssssssss 184
D712 70 o 1 RN 184
D712 52257 o 185
D 0 U o 186
T o o S 187
D o 1 N 188
D G o« o 189
D o< - 5 o 190
T < T o 1 U 191
D e o - o S 192
D 0 T o U 193
D712 70 o R o T 194
D2 520 o o 195

29.13. PUSH/POP register iNStruCtiONS....ccuueeeemmmmmmmmmmmmmiimiiiiiiiiiiimimemimmmmsmmmsssssssosssssssssssssssssssnsssssssssnss 196
29.13.1. PUSH/POP fuNCtioNal OVEIVIEWcuuueemeemmmeeeeiiiiiiiiiiimiiiiiiiiiieiieesiosssssssssssssssssssssssssssnnnsnnncs 196
29.13.2. EXAMPLE USAQE cuucceirmuuccrssmmmmocssssmmmonssssmmmssssssssssossns 197

29.13.2.1. Stack pointer adjustment handling.....c.cceeeeeeiiceieiieeeenmmmmmmmmoomcseeosesssmsmmmsmsosssssssssssssans 198
PONI3 2.2, RegiSIEMISINAMELING ceceeesssssssscssosslbiiii 10errersssssssssnsss SHEEEIIENISIIISRISERNE SE O RERRRERRRROES 198
29.13.3. PUSH/POP Fault handling ...cccceeeeeeeemmmmmmmmmmmmmimmmmmmimmmmomiemmmmmmmmmmmmmsosssssssssssssssssssssssssssssssssns 198
29.13.4. Software view Of @XECULION ..cciiiiiiiiiiiiiiiiiiiiiiiiniiiiiiisissnnmmsmsmsssssssnnnssssssssssssnssssssssssssssnnssss 199
29.13.4.1. Software view of the PUSH SEQUENCEccuiriimimiiiiermmiiiiiiiiiiiiiemmmmmioeemmmmoscssmososssnmane 199
29.13.4.2. Software view of the POP/POPRET SEQUENCE.....ccceuvumimmcoromorssmmmmmmmmmsosossssssssssssssnnncs 200
29.13.5. Non-idempotent memory handling...ccccceeerermmmemmmiiecciereeesmemmmmmmmmsssssssssssssssssssssssssssssssssases 201
29.13.6. Example RV32I PUSH/POP SEQUENCES...cccttrmeiremmmasimmnsmmmssmmonssssssssssssssssssssssssssssssssssssnsns 202
29.13.6.1. cM.PUSh {ra, SO-S2}, =B84cuuriuuremnremnooronernnomonsonsossssnsssssossssssssnsssnssssssssssssssssssssssssnans 202
29.13.6.2. cM.PUSh {ra, SO-ST1}, =112 ccuuiiiireinremnreroremmceronsomsonsrsssossssssssssssnsssnssssssssssssssssssssssssnsns 202
29.13.6.3. CMLPOP {ra}, 16 ceveieriiremmniemmmciommncoommncosmoscessossosssssssssssssssssssssssssssssssssssnssssssssssssssssnasss 203
29.13.6.4. cmM.pop {ra, SO-S3}, 48..ccciiiiiiiiimciiimmnnimmncommonsosmonsssmosssmsssssmssssssssssssssssssssssssssssssssssssss 203
29.13.6.5. cM.POP {ra, SO-S4}, B4 ..ccuuiiiiuiiimmnmimmnnsmmmocssmnnsossoss 203
7228 IC 78 1 1 o 11 £ 204
7228 IC TS T o 00 T 0 2 209
D715 1 T° N X 00 T 0] - 74U 214
D78 1 T8 T o 1o 0= R 219
291371 CMMVSAOT ciiiiiiiiiiiiiiiienniiinioniesimmmsssssmmosssssmmsssssssomssssssssnssssssssssssssssssssssssssnssssssssssssssssssne 224
D T o 0 072 T 225

2914, TABLE JUMP OVEIVIEW. ceuuiiriiiremmioemmmomommoooomsoosossosssssosssssssnsosssosssssos 226
D 226
29.14.2. Table Jump Fault Nandling....cccccecemmmmmmmmmmmmmmmmemmmmmmmmmmmmmmmmmmmmmiosmmsssossssssssssssssssssssssssssssssnns 226
D2 0 TV YN 228
29044, CIMLJteiiiiiiiiiiiiiiieieemammeeeesmmsnooeesmsssossessssssssssnssssssssssssssssnsssssssssssssssssssssssssnsssssssssnsssssssnssnns 230
70 8 YU o > N 232

30. "B" Extension for Bit Manipulation, Version 1.0.0...........c.ccuuiiiiieeieeerereemememmmmmccoceeessosomemmmmnnes 234

BO.1. ZID* OVEIVIEW 1eeuiiiiiinieiniemmoemmoemmesmmesmssmnsossssssosssosssssnessssssnsssssssssssssosssssnnsssssssnsssnsssssssssssnsssnssns 234

30.2. WOrd INSTIUCTIONS iiiiiiiiiiiiiiimimniionissssssssnnmnnnmnmmmnmmmmmmmmmmmmmmmsmssns 234
30.3. Pseudocode for inStruction SeMaNTiCS. ..ccceecummmmmmmmmmmmmmmmmmmmmmmmimmimmmiimiimmiosmmosmmssssssssssssssssssssssons 234
3B0.4. EXIENSTONS ceviiiiiiiiiiiiiiimimimmimmmmsssssssssssssssssnnnnsnsnnnssnnsnsssns 234
30.4.1. Zba: Address geNEratioN...... cceeeeeeerermmmemmmmmomomosesessssmssmmmmssssssssssssssssssssssssssssssssssssssnsnsssssss 236
30.4.2. Zbb: Basic bit-manipulationccceeeeemmeeemmimmmmmeemmmomemmoossmosossssssssssossssssssssssssossssssssssssssssos 237
30.4.2.1. Logical With NEQATE ...ccuuuuiiiiiiiimimmmmmmmmmioioiensmosssmmmmmmmmoosss 237
30.4.2.2. Count leading/trailing zero bitsccccciiiiiiiiiiiiiiiiiiiiiinsiecsicsssssscssnnnnmnmmmmmmmmmmmmmmmsmnmsnnes 237
1C\J2Z 55720 TR @0 TW T Y e Yo o 1U L= oo U 237
30.4.2.4. Integer minimumM/MaXimMUM ...ceeeeeeeeemmmooooomeoeossmsmsmsmssssessossssnssssssssssssssssssssssssssssssssssss 237
30.4.2.5. Sign extension and Zero eXteNSION ...c.ceeucrermmemmcieemmmmmcosemmmmmssesmmmmossossmmmssssssassssssnsannss 237
30.4.2.6. BitwisSe rotation ...cccceciiiiiiiiiiiiiiiiiiiiiiiiimimismisssosssssssssnnnnmnnnennmmsmmmmsmmmsmssssssssssssssssssssssssss 238
30.4.2.7. OR COMDINEG cecviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiessimssmsssssssssssssssssnssnnnnsnnsnsmsnssssnmsssssssssssssssssssssssssssss 238
30.4.2.8. BYLE-TEOVEISE ceuuiiiuiermmcnsmmncommmnnssmmossnmssnsssssssssssssssssassss 238
30.4.3. Zbc: Carry-less MUltiPlCatioN...ccoieiieiieiimmiiririmiioiierimeiooeeemmmmiereemmmmoeesssmssssssssssssssssssssssses 239
30.4.4. Zbs: Single-bit iINSTrUCTIONS ceevviuiiiiiiiiiiiiiiiiiiieiiiiiciiermiiiieesmmmmeseommonsssssmmmsssssssmmssssssssnsssses 239
30.4.5. Zbkb: Bit-manipulation for Cryptographycccceeeeemmmmmmmmmmmcccssiosesmmmmmmmmomsssssssssssssssssssssssses 239
30.4.6. Zbkc: Carry-less multiplication for Cryptographyeeeeeeecececeeeeermmmmmmmemmsoscscocsssssmssmssonsoes 240
30.4.7. Zbkx: Crossbar permutatioNs ...c.ccceeeremmemmmmmoeoiemeeemsmmmmmmmmmosesssssssssssmsmsssssssssssssssssssssnssssss 240
30.5. Instructions (in alphabetiCal OrdEr) ...cccueeeciiiiiiiiiiieimiieieemmmmoeeeemmmmooeeommosoosesssmssssssssssssssnsanssens 241
0 05 0 o o 241
30.5.2. ANEN coose R areooaoauudiE.cceeoeneosolBiieeenenoooe B aseeeesneeoo [SESEEERERTRTTRTTFEFTT oeosssessseeensuseoe SHEEE 242
30.5.3. DEIEE.cores o ereee s e e ccoonsnssernsncealBiiiesssssssssssss s Biiiihocosssnsses BEEB osssessssananseranasssosssssssssnssee REEE 243
0T 7 o T 244
KIVES TS, (O A RN, VOUUOORY SUUPURR SO FOSSUUUUUUURPPRRPRRRORRRRN 245
0 R T T 0T 246
B0.5.7. DINV.iiiiiiiiiiiiiiiiiiiimiiiiiiiiiiiinmnmssisssssssnnsmssssssssssnnsssssssssssssnssssssssssssssnssssssssssssnssssssssssssssnnsssss 247
O 70 T o 01V 248
B0 5 5 o1 - 249
0T T 0 T N 250
0 T 00 o o S 251
0 5 070 o 252
0 T 00 o T S 253
0\ 0 7 o 2 254
0 T T T N 255
B0.5.16. CPOP cceccrecraeroncomsomnsonsssnssosssssssssssssssssssssnsssssssnsssssssssssssssssssssssnsssnssssssssssssssssssssssssnssssnssnnss 256
BO.5.17. CPOPW cieruieranrmanrmmnsmmnsmnnsssssonsssssssssssssssssssssssssssnsssnsssnnss 257
BC T 7 1S o 2 258
0T 5 00 150 7., 259
0T 5 007 R - 260
0 T 0 O P (RS 261
0 5 07570 o 262

30.5.23. MINU tetiiiiiiiiiiiiiiiiiiiimniiiiiieisinmmteteiiessmmsmssssssssssnssssssssssssnsssssssesssssnsssssssssssssssssssssssssssnnss 263

BO.5.24, OFC.D ciiiiiiiiiiiiiiiiiiieirmrmnoomosmoosossossssssossssssnsssnsssnsssns 264

0 T 07 T) U 265
3BO.5.26. PACK euummmmmmiimmmmmmmmmmmmmmmoossnnmsssmsssssssssssssssssssssssssssssssssssnsssnnss 266
G5 077 0o Y- T {0 267
30.5.28. PACKW ceueiueiiremnremmremmcoransomsamssssssonsssnssossssnasssssssnsssssssssssssssnsssnssns 268
3BO.5.29. FEVS cuiiiiiiiiiiiinniinnnnniiiinssssnnmsssssssssssnnsssssssssssssnssssssssssssssssssssssssssssnssssssssssssssssssssssssssssnnss 269
3BO.5.30. DIrEVS..ccuuuuieiiiiiiiiicnnmmnniiimsiosnnmmmmsmsssssssnnsssssssssssnssssssssssssssnss 271
0 0) 272

0 5 0 7 o1 273

0T 5 0 1 T 274

0 R 0 o 275

0 R 70 T T) 1 276

0 5 0 T o R 277
G\ R 728 ST 7 R 278
0T R TG S TR ST R 279
B85 10 150 o - [N 280
0T 5 07\ JU Y 0 T [R 281
G\ JR5 07 RS o 77 o [N 282
G5 071570 S 017 Yo o 11 283
G5 7 5C RS 7T [284

0 T TR T] 1 7 T o U 285
30.5.45. [SIAUW . S0, o WO .. ooooecoonodBBB ereeeeee REE b rrrressssssns SRRRRRRERRRRRRRRRRERRRY ¢ 00t ss0sss00sssssss SubEE 286
BO.5.46. UNZIP cevvemnoeemmmmmomsemmmmmomeennmmmoosennsmmsoosssssnsssssnssnssssssssnssssssnssssssssssssssssnssnssssssnnsssssssnsansssssnnns 287
BO.5.47. XNOK weiiiiiiinniniimmnniomimmisosssmmnsssssmmmosssssmnesssssssssssssssssssssssssmssssssssssssssssssssssssssnssssssssassssssssnne 288
30.5.48. XPEIMSB .ccieiuemnerunemmmommommsamsssmssonssosssssssssssssssssssssssssssssssssnssssssssssssssssssssssssssssssssssssnssssassns 289
30.5.49. XPEIMA .cviiiiremnreroneronomonosonsonsssssossssssssssssssssssssnsssnsssnnsssnss 290

0 T T TR0 > U 291

G T T T 0 ' 292
30.6. Software optimization QUIAEcciiiiiiiiiiiiiiiiiiiiiiiiimiiicomscssossssssnnmmmmmmmmmmmmmsmmmmmsmmsssssssssssssssssssssssss 292
0 1 20 T Y g o S 292

B TG Y7203 1 o 294
31. "P" Extension for Packed-SIMD Instructions, Version 0.2ccccccceeeeeeueeeeeemnocoseommocesessonnnee 296
32. "V" Standard Extension for Vector Operations, Version 1.0ccccccceeevieviieieeeiececcececoseocssons 297
B0 57208 TR N 11 Y [o Y 297
32.2. Implementation-defined Constant Parameterscccccceeieeererimmemiiicoceioneeesmmmmmmmmmsssssssssssssssssnns 297
32.3. Vector Extension Programmer’s MOAELcceeeerereeemmmiccrimreeenemmmmmmmmmoooososesssssssssssmsssssssssssssssssssns 297
32.3.1. VECTOr REQISTEIS cuuuuuuicciremememmmmmmmmmmssosssssssssmmsmssssssosssssssssnsss 298
32.3.2. Vector Context Status iN MStatus cccccmmemmmmmmmmmmmmmmmmmmmmmmmmmmmmmmssmossoossssssssssssssssssssssssssssssssnns 298
32.3.3. Vector Context StatUs TN vSSTAtUS ccccccmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmiessmossossosssssssosssssssssssssssssssssssnns 298
32.3.4. Vector Type (viype) REGISTEN wuuuuuuiieiiiiieremiiiiiiiiiincecneeeerenmmmmmmmomoososssssssssssssssssossssssssssssssssnns 299
32.3.4.1. Vector Selected Element Width (vsewl[2:0]1) ceeeemeemmmmmmmmmmemieeimeeeeemmmommmmsmssmsssssssssssssssonns 300
32.3.4.2. Vector Register Grouping (vImul[2:0]) ccceeeeeeeeemmmmmmmmmemmmmmmmmmimmmimmmiemimsssssssssssssssssssssnnes 300

32.3.4.3. Vector Tail Agnostic and Vector Mask Agnostic vta and vma .cccceeeeemmmmmmeocococecocsesnnnns 302

32.3.4.4. Vector Type Illegal (VA1) cceeecmemmmcoommcosmmsosmmsommossssmnssssssssssssssssssssnssssssssssssssssssssssssnss 304

32.3.5. Vector Length (V1) REQISIEN cecuuuuuceiiiiiemimmmmmmimiiomcssmosesmmmmmmmmmsossssssssssssssssssssssssssssssssssssssnssss 304
32.3.6. Vector Byte Length (vienb) REQISEN c.cceeuuuiceiiiirermmmmmmmmmiiiomoniicmesmmmmmmmmmmossossssssssssssmsssssssssss 305
32.3.7. Vector Start Index (vstart) REQISIEN c.cceeuiuiiceiiiinermmmmiimmmiiomoieieeesnmmmmmmmmmsssosssssssssmssssssssssses 305
32.3.8. Vector Fixed-Point Rounding Mode (vxrm) REQISLErccemmmmmmemmmmmmmmmmmmmmmmmmmmmmmmmmmmmemmeesneens 306
32.3.9. Vector Fixed-Point Saturation FLlag (VXSat) ccceeeeeeeemeeeemmmmmioemmmmmosesmmmmoseenmmmssessmmmssssssmmnsocs 306
32.3.10. Vector Control and Status (vesr) REQISTEN wuuuucicieiieiimmmmmmmiiiscosoconessmmmmmmmmmsossssssssssssssssssncs 307
32.3.11. State of Vector EXtension at RESETccccciriiiinmmmmmmmmmmmmmimmiimmiiiiiiiiiimiiimiiimimsmossssssssssssssssscs 307
32.4. Mapping of Vector Elements to Vector Register Stateccccvvuiiiiiiiiiiiiiiiiiiiiiiiiieniisssssssssssossccs 307
32.4.1. Mapping fOr LIMUL = Tu.cciiiiiiiiiiiicoiomeeenemmmmmmmmmmossssoosssssmssssssmsssssssssssssnssssssssssssssssssssssssssssnns 307
32.4.2. Mapping for LIMUL < T..ciciciiemiimiieemmmmimmeemmmommesmemmssesmmmsssssssmmsssssnsanssssssmsnssssssmnssssssnsanssss 308
32.4.3. Mapping fOr LIMUL > T..iiiiiiiiiiiiicoioiomommmmmmmmmmmsssesss 309
32.4.4. Mapping across Mixed-Width Operationsccccceeemeeemmmcocceceeensmmmmmmmmosscssscssssssssssmsnsssssses 310
32.4.5. Mask RegiSter LayOUL c.ccccceeiiiiiiinimesscossssssossnnnmmmmmmmmmmmmmmmmmmsmmmmmss 311
32.5. Vector INStruction FOrMatS...ccccummmmmmmmmmmemmmmmmmmmmmmmmmmmmemmiesmmesmeosmmsmmsssssssssssssssssssssssssssssssssnssssnns 311
32.5.1. SCAlar OPEraNnds ..ccceeceeecearemcsomosesosesssssssssssssssssnssnssssssssssssssssssssssssnssssssssnsssssssssssssssssssssssssns 313
32.5.2. VECLOr OPEIaNdS ceuceueerueemmremnromosemosomosesssnssssssssssssssssssssssssssssssssssns 313

BC 5785 T0C T V/ <Y o) g 1/ =T 1T 314
3245.3.1. MaskiENCOC M e It eesseessssssssssssssssss HEEEER, ooeeeesscsscsssseortbiEeRRERRRRREORRRRRRENY | | | e eaeeeaaee 315
32.5.4. Prestart, Active, Inactive, Body, and Tail Element Definitions.....cccceeeeereimiicieiemeeiccnennenenns 315
32.6. Configuration-Setting Instructions (vsetvli/vsetivii/VvSetvl) cccecemeemereremmmmseemmmmmocoensmmmossssnmananse 316
32.6.1. viypel €NCOUINT aaasxsi@B0B . cccosssaeesssssofBiiibecessssss Eii R cosscccssssss dRERRESEERERRERBRRRRERr 00000 000000000 000ss SHEREY 317
32.6.1.1. UNsSupported viype VAIUES .cccieiierieiieremnmmrmomoiemsomsomsssssssnsonssnssssssssssssnssssssssssssassnssnssnns 318
32.6.2. AVIF €NCOEING eoeeeeeeREiERE coceeoosoesoliiiiocccceeeeeererrrees UM onsosssoEEEEL cossssssssessessssssssssssssssssossostiity 318
32.6.3. Constraints 0N SEtHNG V0 .cccceecriiiinmmmmmmmmmmmmmmmmmmmmmmemmimmmeemmemmmmmmmssmssssssssssssssssssssssssssssssssnnsnns 319
32.6.4. Example of stripmining and changes t0 SEW.....ccccciiiiimiiiiiiimieiceeemmenceenmmmmooesmmmmosssseane 320
32.7. Vector Loads and STOreSccccceiiiiiiiiiiiiiiiiiiiiiiiiiiiommmmemimisiiieissommmmmmomosssssssssssssmmmmmsssssssssssssssses 320
32.7.1. Vector Load/Store Instruction ENCOAING..ccccciiiiiiieiiieiissicesiscssssnnmnnmmmmmmmmmmmmmmmmmmmmmmmmsssssssssss 321
32.7.2. Vector Load/Store AAdressing MOUESccceueeemmmmmmmmmmmmmmmmmimmmmmmimmmessmesssossmssssssssssssssssssssssnss 322
32.7.3. Vector Load/Store Width ENCOAING..ccceviiiiiiiiiiiiiiiiiiiiiiiiiiiimnissssossosssssssnnsosmsnnnssssssssssssssssnns 323
32.7.4. Vector Unit-Stride INStruCtioNS...cccciiiiiiiiiiiiiiiiiiiiiiiiiiisisisissssssinnnmemnmmmmmmmmmmmmmmmmsssesssssssssssses 325
32.7.5. Vector Strided INSIrUCTIONS.ccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiissicssssssssnnnnmnnmemmmesmmmmmmmmsmsssossssssssssssss 325
32.7.6. Vector Indexed INSTrUCTIONS ciciiiiiiiiiiiiiiiniiiinsississssnmnnmmmmmmmmmmmmmmmmmmmssmssssssssssssssssssssssssssssssss 326
32.7.7. Unit-stride Fault-Only-First LOAdSccceueeemumicmeioieeeenmmmmmmmmmomoocoosessssssmmssmsssssssssssssssssssssnssssses 327
32.7.8. Vector Load/Store Segment INSrUCTIONS w.cuueueemmmmmmmmmmmmmmmmmmmmmmmemiimiiemmeemmessemssssssssssssssssssnse 328
32.7.8.1. Vector Unit-Stride Segment Loads and STOresccccceeieeemmmmmmmmmmmocscssssssssssmsssmssoosssscs 330
32.7.8.2. Vector Strided Segment Loads and STOreS.....ccceeuummmmmmicccssssssssmmmmmmmmosssssssssssssssssssnsncs 331
32.7.8.3. Vector Indexed Segment Loads and STOreSccccceeeeueccecimmmmccnssmmmmocsssmmmmocsssssmossssssanne 331
32.7.9. Vector Load/Store Whole Register INStruCtionscccceeeieeeicesccssccsccssnnnennmnmnmmmmmmmmmmmmommnnnes 332
32.8. Vector Memory Alignment CONSEraints c.ccceeeeeiiiiiiiiiiiiiiiiiiiimimiesiissssssssssssssssssssssnsmsnsssssssssssssssns 334
32.9. Vector Memory ConsiSteNCY MOAEL ...cceuuuuiermmmmnieremmmiieemmmmmioemmmmmsossmmmmssesnmmmsssssssmnsssssssmsssssnns 335
32.10. Vector Arithmetic INStruction FOrMAtsccccccummmmmmmmmmmmmmmimmmiiemiieiieiiiiiiiiiiimiiemiiessosssssssssssssssnns 335

32.10.1. Vector Arithmetic INStruction enNCOAiNg ...cccueeccceieeeemmmmmmmmomiososcsosssssmsmmmmsssssssssssssssssssssssscs 336

32.10.2. Widening Vector Arithmetic Instructions
32.10.3. Narrowing Vector Arithmetic Instructions

32.11. Vector Integer Arithmetic Instructions
32.11.1. Vector Single-Width Integer Add and Subtract
32.11.2. Vector Widening Integer Add/Subtract
32.11.3. Vector Integer Extension
32.11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
32.11.5. Vector Bitwise Logical Instructions
32.11.6. Vector Single-Width Shift Instructions
32.11.7. Vector Narrowing Integer Right Shift Instructions
32.11.8. Vector Integer Compare Instructions
32.11.9. Vector Integer Min/Max Instructions
32.11.10. Vector Single-Width Integer Multiply Instructions
32.11.11. Vector Integer Divide Instructions
32.11.12. Vector Widening Integer Multiply Instructions
32.11.13. Vector Single-Width Integer Multiply-Add Instructions
32.11.14. Vector Widening Integer Multiply-Add Instructions
32.11.15. Vector Integer Merge Instructions
32.11.16. Vector Integer Move Instructions

32.12. Vector Fixed-Point Arithmetic Instructions
32.12.1. Vector Single-Width Saturating Add and Subtract
32.12.2. Vector Single-Width Averaging Add and Subtract

32.12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation

32.12.4. Vector Single-Width Scaling Shift Instructions
32.12.5. Vector Narrowing Fixed-Point Clip Instructions

32.13. Vector Floating-Point Instructions
32.13.1. Vector Floating-Point Exception Flags
32.13.2. Vector Single-Width Floating-Point Add/Subtract Instructions
32.13.3. Vector Widening Floating-Point Add/Subtract Instructions
32.13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions
32.13.5. Vector Widening Floating-Point Multiply

32.13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions

32.13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions
32.13.8. Vector Floating-Point Square-Root Instruction

32.13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction
32.13.10. Vector Floating-Point Reciprocal Estimate Instruction

32.13.11. Vector Floating-Point MIN/MAX Instructions

32.13.12. Vector Floating-Point Sign-Injection Instructions

32.13.13. Vector Floating-Point Compare Instructions

32.13.14. Vector Floating-Point Classify Instruction

32.13.15. Vector Floating-Point Merge Instruction

32.13.16. Vector Floating-Point Move Instruction

32.13.17. Single-Width Floating-Point/Integer Type-Convert Instructions

338
339
339
339
340
340
341
343
343
344
344
347
348
348
349
349
350
350
351
351
351
352
353
353
354
354
355
355
355
356
356
356
357
357
358
362
368
368
368
370
370
370

371

32.13.18. Widening Floating-Point/Integer Type-Convert Instructions
32.13.19. Narrowing Floating-Point/Integer Type-Convert Instructions
32.14. Vector Reduction Operations
32.14.1. Vector Single-Width Integer Reduction Instructions
32.14.2. Vector Widening Integer Reduction Instructions
32.14.3. Vector Single-Width Floating-Point Reduction Instructions
32.14.3.1. Vector Ordered Single-Width Floating-Point Sum Reduction
32.14.3.2. Vector Unordered Single-Width Floating-Point Sum Reduction
32.14.3.3. Vector Single-Width Floating-Point Max and Min Reductions
32.14.4. Vector Widening Floating-Point Reduction Instructions
32.15. Vector Mask Instructions
32.15.1. Vector Mask-Register Logical Instructions
32.15.2. Vector count population in mask vcpop.m
32.15.3. vfirst find-first-set mask bit
32.15.4. vmsbf.m set-before-first mask bit
32.15.5. vmsif.m set-including-first mask bit
32.15.6. vmsof.m set-only-first mask bit
32.15.7. Example using vector mask instructions
32.15.8. Vector Iota Instruction
32.15.9. Vector Element Index Instruction
32.16. Vector Permutation Instructions
32.16.1. Integer Scalar Move Instructions
32.16.2. Floating-Point Scalar Move Instructions
32.16.3. Vector Slide Instructions
32.16.3.1. Vector Slideup Instructions
32.16.3.2. Vector Slidedown Instructions
32.16.3.3. Vector Slidelup
32.16.3.4. Vector Floating-Point Slide1up Instruction
32.16.3.5. Vector Slideldown Instruction
32.16.3.6. Vector Floating-Point Slideldown Instruction
32.16.4. Vector Register Gather Instructions
32.16.5. Vector Compress Instruction
32.16.5.1. Synthesizing vdecompress
32.16.6. Whole Vector Register Move
32.17. Exception Handling
32.17.1. Precise vector traps
32.17.2. Imprecise vector traps
32.17.3. Selectable precise/imprecise traps
32.17.4. Swappable traps
32.18. Standard Vector Extensions
32.18.1. Zvl*: Minimum Vector Length Standard Extensions
32.18.2. Zve*: Vector Extensions for Embedded Processors

32.18.3. V: Vector Extension for Application Processors

371
372
373
373
374
374
374
375
375
375
376
376
377
378
378
379
380
380
382
383
384
384
384
385
385
386
386
387
387
387
388
388
389
390
391
391
392
392
392
392
392
393
394

32.18.4. Zvfhmin: Vector Extension for Minimal Half-Precision Floating-Point.....ccccccceeeeeueecennees 395

32.18.5. Zvfh: Vector Extension for Half-Precision Floating-Point.......ccccceeeemmmmmmmmeiecccccceeosnnnmmneoncs 395
32.19. VecCtor ELemMENT GrOUPS . ccccceecemecemmcemmcommromcosocsmosssscssnsssnss 396
32.19.1. ELlEMENT GroUP ST1ZE..uuceeiereremmmmmmmmmmmmomomooronmmmmmmmmmssssossosssssssssssssssssssssssssssssssssnsssssssssssssssnns 396

G 5208 10 07T g Y 396
32.19.3. Determining EEWcccccciiiiiiiiiemmiiiieemmimioemmmmmomeenmomsssssnmmmsssssssmnsssssnsnssssssssnssssssssnssssssnnans 397
32.19.4. Determining EMUL.....cccciiiiiiiimmmmmmmimomimimmommmmmmmmommss 397
32.19.5. Element Group WiIdth ..ceeeeeeeeeeemmimiiemmmimiiermmmmomeemmomemeemmmmoseessemmosssnmmmsssonssmssssssnsassssssnsane 397
32.19.6. MASKING «ecuceccoosoonmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmssosssosssnsssnssssssssssnnsssssnnss 398
32.20. Vector INStruction LiStiNG cecceeeeiiieiieiiiiiiiiiiiiiimiiiossossssssssssssnsnnsennsmsnsssssssssssssssssssssssssssssssssssssns 398
33. Cryptography Extensions: Scalar & Entropy Source Instructions, Version 1.0.1.................. 404
1C 1 T80 R 5 P T Yo 404
150 70700 1 1o LT o o U 404
33.2.1. INtenNded AUIENCE ..uuuuiuummmmmmmmmmmmmmmmmmmmemmmmmmmemnimmimesiessssssosssosssssssssssssssssssssssssssssssssssssnsssnssnse 404
33.2.2. Sail SPECITICAIONS wuuiiriieieriiiiiiiiiiiceiiieeeremmmmmmmmmsonsmosesssnmmmssmssnnns 405

0 0 7070 TR 0 o 1 405
33.3. EXtENSTONS OVEIVIEW wecuuuiuumummmmmmmmmmmmmmmmmmmmmmmmmmmmmemssmmmmmssmosssnsnnsnnnnnsns 406
33.3.1. zbkb - Bitmanip instructions for Cryptographyccceceeeeememmmmmmmmemocccccosessssmmmmmmsosssssssssssssns 406
33.3.2. zbke - Carry-less multiply iNStrUCTIONS ..cceeerriiimimmiiiiceciieremememmmmmmmmiocooesosesssssmmmmmsososesssssssssnns 406
33.3.3. Zbkx - Crossbar permutation iNStrUCTIONS ...ccevveimiiucceiiieereremimmmmmmmconemeeesesmmmmmsmmmssssssssssnanns 406
33.3.4. zknd - NIST Suite: AES DeCIYPION ccuuiiiiiiireriiieeiieemmmoosmsmoocssnoesssossnsssssssossssssssssosssssssssssssss 407
33.3.5. Zkne - NIST Suite: AES ENCIYPLION coceeiieiiiiemmiieemmioemmmomemmmooesmmeesssmsesssssssssssssssssssossssssssssssss 407
33.3.6. zknh - NIST Suite: Hash Function INSTruCtionscccceiiiiiiiiiiiiiieiiisssscsscssssssscnnonnennennnmnnnnnns 407
33.3.7. Zksed - ShangMi Suite: SM4 Block Cipher INSTtruCtionS c...cccceiiieeieeieeesccsscccsccsonnconnennmmnnnnne 408
33.3.8. zksh - ShangMi Suite: SM3 Hash Function INStructions......ccccceeieeiieeciccsccsscossnnconmoonmennnnne 408
33.3.9. Zkr - ENtropy SOUIrCe EXTENSTON ccvvurerimrremmmommmooormoomersosoossosssssssosssssosssssssssssnssssssssssossossssssns 408
33.3.10. zkn - NIST AlGOrithm SUTTE cccceeiirmmmmmimmiciceonmememmmmmmmmmmoososs 408
33.3.11. Zks - ShangMi AlgOrithm SUITE w.cceeeeiiemmiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimmimmmsssssssssssssssssnnssnnmsnssonnnncs 409
33.3.12. zk - Standard scalar cryptography eXtENSIONceececeeeiereremmmmmmmmicoceoosesessmmmmmmmoosessssssssssns 409
33.3.13. zkt - Data Independent EXecution Lat@NCYccuucceeeieeerermmmemmmmmmconemosesesmmmmmmmmoossssssssssnnns 409

BC 50 77 SO 10 1 1o T N 410
0 0 20 R T 3 o 410
BC5C T 30730 1=TS3C 2. L1 ¢ 411

B 50 77 30C TR~ T3 0 412

G 50 7 7 = YN 522 Y o N 413
0 2 T =1 o 414

0 0 2 G T~ TG T] o N 415
0 T - T 416
33.4.8. AESOAESIM ceuuuiiiiiiuuininiimiinnessommonsessmmmnssssommssssssonssssssssmsssssssssnsssssssnnsssssssssssssssssnssssssssnsssssssss 417

G 50 17 Lo =YY G 7 o 418
33.4.10. AESOBAKSTT cuuuuuuuniiiiinieninnnmmmmmmsssnnnmssssosssssnnssnsssssssssssns 419
0 2 = TG 420

G 3 204 i 2 1 o T [USSR 421

GG R R o =7 Y 422

0 7 2 o 0 423
0 50 7075 TR o 1] N 424
5 7 1 0 o 425
G 1 70 170 o Y < 426
BC 1 70 1< T 7T (N 427
33419, PACKW. ceuiiiieiiiemiremoromonemonemmsossonssossonssssssssssssssssnsssnssssnnss 428
0 50 7707 7 429
B 5C 750 O o RN 431
T 20 o 432
0 2 U 433
BC 5C 7730770 o R 434
BC 50 77307 J0 o 11 435
B 50 775071 T o 1N 436
33.4.27. ShA256STg0..ccuuuiiiiiimininmmmmmmimmmsnnnnmmmsmmossssssssssssssssssssnnsssssssssssssnssssssssssssssnsssssssssssssssssssssssss 437
G 1 TR < TO =] F= D745 1= T NN 438
33.4.29. Sha256SUMO ...ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiassssomommmmmmessssssssssssossmmmmosssssssssssssssmmmmssssssssssssssss 439
SC 50 77306 T JRE Y g = 12251 67 1 o RN 440
BEZNSIl. Shab125iQ Qi ...0uueeeaasassssssssss o BEEEEME o oeeessessassssseoso EieRRERRRnE R O000000000000C 441
33.4.32. sha512sig01L...ccueeeiiiieiiccnnncnnnnensannns A ce ecceuneennnnannnnnnneannanssssssssns dOtty 442
33.4.33. sha512sigih......... - S . N N 443
33.4.34. shab12Sig1l ceceeeeeeeecccecenennnnammmmmmmoocososssssssnnnne co oS TTTTITIIIEIII S s 0assserssnsevesane ouey 444
33.4.35. shab512SUmOT ...cceeiieeiiiiiimmmieneecssieninnnnenee S e e s ceseossnnssiiitresesssssansessassassesssssnasesssessaseny 445
33.4.36. SNADT2SUMIK weuiiiiiiiiiimiimninnesmmmminsessmmmessssommessssssmmsssssssmmssssssssmssssssssmsssssssssssssssssnssssssssansass 446
33.4.37. sha512sig@........... ;. . S seesecssessesssseaseseeennnnnnnnnnan bty 447
GG T TG 1S A=Y P 1 52 T 448
33.4.39. SNa512SUMO cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieimmeieeesssossssosommmmmmosessssssssssssssmmmsssssssssssssssssssmnnnns 449
B 50 7737\ A= o = T 72 450
BC 50 1757 9 7)N 451
] 1 452
0 T TR g2 o 453
00 T Y g g 454
G 1 TR 1 TR 1] 4 N 455
33446, XNOK cuuiiiiiiuunoesommmnnoessmmmnssssommossssssmmssssssssnssssssssnssssssssnssssssssnssssssssnssssssssasssssssssnssssssssnssssssss 456
1C 15 T 2 75" o Y=Y g 1 SR 457
BC 1 T2 TR Y 0 458
BC 5C 77571 o R 459
33.5. ENTrOPY SOUICE cutiiuiimuiemmiemmemmnemmemmosmnsssosssssossnnns 460
33.5.1. The seed CSR iiiiiiiiiiiiiiiiiinioniimmmmmmmmmmmmmmimmemmmemssimssesssnnnnnnssnssnss 460
33.5.2. Entropy SOUrce REQUIFEMENTS ..ccvvrrreemmmiireemeneremmmmmmmmmmososssososssssmsmsmssssssssssssssssssssssssssssssssns 461
33.5.2.1. NIST SP 800-90B / FIPS 140-3 ReQUIr€MENTS ..uueiirimeieremmmmciermmmmoeosmmmmoosonmmmoosesnans 462
33.5.2.2. BSI AIS-31 PTG.2 / Common Criteria RequirementsS......ccceeeeerermmmmeenermmmmcneeneomcseennas 462

33.5.2.3. Virtual Sources: Security REQUIrEMENT ...cccveuuiiermmmiireimmmmooreemmmmcmeemmmmoosesmmmossonsonsosses 463

33.5.3. ACCESS CONIIOL 10 SEEU...ceuuuieiiueiiiieeiiieeimneemmneesemessmmessmmsssmsssssmsesssnssssmnssssnsssssnnssssnssssnnses 463

33.6. Data Independent Execution Latency SUDSEt: ZKtcveeuieeiiiermeeemmieeemmicesmmososmossssossssosssssones 464
33.6.1. SCOPE ANA GOQAL evuuieuuiemnirmncomnnomonormnssnosmossnssns 464
33.6.2. BACKGIrOUNG cecciiiiuuuiiinmimmnnensmmmonsssmmmmsnsssmmmessssssmesssssssmssssssssnssssssssnssssssssassssssssssssssssssnssssssse 465
33.6.3. Specific INSTruction RAtioNale.....cccuuuiiiiiiiimiiiiieimmiiieiemmmieremmmmooeesmmmooossonmasosesnssnsssessnssnsse 466
33.6.4. Programming INfOrmationccccceeeeemecremmmmmcieemmmmineemmmmooeemmmmmsoessmmsssssnsanscsssnsanssssssnsansss 466
33.6.5. ZKE LISTINGS vevvvevecrceooosmmmmmmmmmmmmossososssssssmmmmmsmss 466

33.6.5.1. RVI (Base INStrUCtION SEt).ccuuuiiieimmmmiieimmmmmoeiemmmmmomermmmmoreommommonsonmmmssssonsassossssssmssssssnsnns 467
33.6.5.2. RVM (MULIPLY) ceeeeecmmmmmmmmmmmmcmmmmmmmmemomossmmssmssssssssnnnssssssssssssnnnssssssssssssssssssssssssssnsssssssssss 468
33.6.5.3. RVC (COMPIreSSEA) cevuueeemennsommnnsmmmsosmnnssssnsssnsssassss 468
33.6.5.4. RVK (Scalar CryptOgraphy) c.cccceeeceemecemmesommmnssmmocssmmssns 469
33.6.5.5. RVB (BitManip) ccceeceeeeceemmceemmomemmmoeommocosmmosessoosossosssssssssssosssssossssssssssssssssssssssssssssssssssssss 469

33.7. INStruction RatioNale.....cuuueeeeemiiiiiieiiiiiiiiiiiiiiiiiiiiiimiimmssmssssssssssssssssssnnssnsssnnsmssmsnnsmsssosssssssssssssssss 470
33.7.1. AES INSTIUCTIONS wuiecicosoosnmmmmmmmmmmmmmmmmmmmmmmmmmmmssmmssmsssnsnnnssssnsnns 470
33.7.2. SHAZ2 INSIIUCTIONS weueuiiiimimmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmsmsssmosssosmossmsssssssssssssssssssssssssssssssssssnnssnssnne 470
33.7.3. SM3 and SM4 INStrUCTIONS . cccciiiiiiiiiiiiiiiiiiiiieiiiiiiieiinsssssissssssssssnnnnnsnnnnnmmsmmssmmmmsmsmsosssssssssssss 471
33.7.4. Bitmanip Instructions for Cryptographycccceeeeemmmmmmmmemmcoceesosmsmmmmmmmmososssssssssssssssssssssssssssss 471

1C5C 77207 2.1 71 o T T 471
33.7.4.2. Bit & Byte PermutationsS.....cccceuecccieiiererimmmmmmmmmomoisneessssmmmmmmsssossssssssssssssssnssssssssssssssss 472
33.7.4.3. Carry-1ess MULTPLY .cccereeerrmmmmmmmmmmmcmenemeeeeremmmmmmmmmsosssossessssmsmssssssssssssssosssssssssnsssssssssssssses 472
33.7.4.4. LOQiC With NEQAte ..cceeriiiuieiiiimiiiiiiiiicieiiiimieenmmmmomoesnmmsosssnmssssssssnnsssssssssssssssnsanssssssnns 472
33.7. 4350P ACKINT L coooossssitOie e cccccessssssesiiiiiossecessss Maaatesssesossssess MR ETTITETTEEieassasossssssssesessassssss ManE 473
33.7.4.6. Crossbar Permutation INStrUCTIONS ..ccceevuemiiiiiiiiiiiiimmiiiiiiiiiiiiioiiemiemsssssssssssssssssssssssnnnne 473

33.8. Entropy Source Rationale and Recommendationsccccceeerreeemmmiiioceieeeeemmammmmmmmmoooscsssssssssnssssnes 474
33.8.1. Checklists for Design and Self-Certificationcccccccccemmmmmiiiiiiiiiiiiiieiiiiiieiniimnimsssesssssssossonns 474
33.8.2. Standards and TermMiNOlOgYcccceeremmmmmmmmmeemomererenmmmmmmmmmooososeesonsssssssmmssssssssssssnsmssssnssssssssscs 475

33.8.2.1. ENtropy SOUICE (ES).cuceruceruremermmremnrmmnoomososnsosonssosssssssssssssssssssnsssnsssnsssnssssssssssssssssssssnsss 476
33.8.2.2. Conditioning: Cryptographic and Non-CryptographiCccccceeeemmmemcmeecccccceceeenemmmmmnonooes 476
33.8.2.3. Pseudorandom Number Generator (PRNG)....cccceeemeerimmcnmmmncnimannsimassmmocssmmosssmoossssoossns 477
33.8.2.4. Deterministic Random Bit Generator (DRBG)ccccuvuceeeeeeeeemmmmmmmmmmoocoossososssmmsssmnoosones 477
33.8.3. Specific Rationale and ConsiderationNS.......ccceeereeieiemimmeieeeemmmooeeemmmmoeossmmmsoessmsssssssssssssens 477
33.8.3.1. The 588d CSR cuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimioiommmmssmsisssmssssmossssossssssssssmsssssassssssssssmssssnasssnsasssns 477
33.8.3.2. NIST SP 8O00-9OB ..cccviiiiiiiiinmmmmmmimmmosonmmmmmmsssssssnnssssssssssssnss 478
33.8.3.3. BST AIS-3Tuuiiiiiiiicccmmnmmsmmmsmsssnnmmsssssssssnnsssssssssssssnsssssssssssssnnsssssssssssssnsssssssssssssssssssssssss 478
33.8.3.4. VirtUal SOUICES wccvvuvvmmmmmmmmmmmmmmmimmmiemiimimessmosmmmmmsssnssssssssns 479
33.8.3.5. Security Considerations for Direct Hardware ACCESS ...ccceuueerrmemmicnermmmmocooeommmoocoosannone 479
33.8.4. Security Controls and Health TeStS.....cieiiiirrmirermioremmcoemmmomsoooossoosossosssssssssssssssssossosssssons 480
33.8.4.1. T1: On-demand tESTING cccceeerrmmmmmmmmmoocoeooossmmmmmmmmmmososs 480
33.8.4.2. T2: CoNtiNUOUS ChECKS ..cuuuuuummmmmmmmmmmmmmmmmmmmmimmiimiiimiiimiimsiommoosmosssssssssssssssssssssssnsssnsssnsnnne 480
33.8.4.3. T3: Fatal error StateS...cccceieeeieiiiiimiciiiiimmmonismmmmossssemmssssssmmesssssmssssssssossssssssssssssssssssess 481
33.8.4.4. INfOrmMation FLOWS.....ccccuviiiiiiininmmmmmmimnsisnnmmmsmmmsssssnnsssssssssssssnnssssssssssssnsssssssssssssnsssses 481
33.8.5. Implementation Strat@gies c.ccceuummmmmmicioieiooiommmmmmmmmmsoosossssssssmmsssssssssssssssssssssssssssssssssssssssnss 482

33.8.5.1. RiING OSCIllatorsS.cccuuucceceeeeemmmmmmmmmmmomoscoosssssmmmmmmmmssnss 482

33.8.5.2. SOt NOTSE euuiiiiiiiiiiriiremeemeemmeommoommosmmssmessmossssssnsesnsesssssssssnsssssssnsssssssssesnsssnsesssssnsns 483

33.8.5.3. Other tyPeS Of NOTSE uciiiiiiiiuiiiiiuiieimieremmieesmmeosmmooessnoosssososssssessssssssssssssssssssssssssssssssssss 483
33.8.5.4. ContinUoUs Health TeSTS .ccueuiuimimmiimiiiiiiiiiiiiiiiiiiiiiimmimmiessmsssssssssossossnsssnnnnnsnssssssmssnnsnns 483
33.8.5.5. Non-cryptographic CONAitiONErs ...c.ccueeeuumueccieiereeenmmmmmmmmmoncoesosssnsmmmmsmsssssssssssssssssssssnes 484
33.8.5.6. Cryptographic CONAItIONErS ...ccceveeerrmmmimmmmiceenmereeemmmmmmmmmmoosssscsssnsmssssmsssssssssssssssssssanns 484
33.8.5.7. The Final Random: DRBGS....cccccutiiiiiiiiiiiiiiiiiiiiimmsssssssssssssssnnnnmmnnmensmmsmmmmmmmsssosssssssssssss 485
33.8.5.8. Quantum vs. Classical Randomccccciiiiiiiiiiiiiiiiiiiiniicssssscssnnnmmmmemmmmmmmmmmmmmmmmmssssssssssss 485
33.8.5.9. Post-Quantum Cryptographycccceeeeeeemmecssmmcssmmcssmmocssmossssmmsssmsssssossssssssssssssssssssssssss 486
33.8.6. Suggested GetNoise Test INterface.....ccccueiiiiiiiesscssccnnsnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmssossmossssssssssssss 486
33.9. Supplementary Materials ...ccceeeeeeeemmiierenereeemmmmmmmmmmmmomommoeosonmmsmmsmmssssssssssssssssssssssssssssssssssnsssssns 487
33.10. SUPPOIrting SaAil COUE ccuuuiirimiiuiireriiiiiiermiamoreermmmimeemmmmmosessmmmmssssssnmmssssssmansssssssmnssssssnsnssssssnsnnsss 488
34. Cryptography Extensions: Vector Instructions, Version 1.0..........cccccceevummmeieiiiciccnnnneeccccsnnns 496
0 O I o T 11T T o 496
34110, Intended AUAIENCE cccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimmiessissssssssssssssssssssssssssssnssnsssssssssssssssssmsssmsssssssss 496
34.1.2. SAil SPECTTICATIONS .eveeririiiiiiiiiciiieierernmmemmmmmmmeeomeseesssmmsmmsmsmsssssssssssssssssssmssssssssssssssssssasnsnssss 497
0 R TR o T 497
34.1.4. ELEMENT GIrOUPS ceveeeeenremmcemmoemsooronorsssns 498
34.1.5. Instruction CONSIraiNTS . ccccuiiiiiiiiiiiiiiiiiiiiiiiiiimiismmmmsmsssssssssssssssssnnnsnnnsmnsnsssmsssssssssmsmsssssssssssss 499
3286w/ ector-ScalaARINSIIUCHONS ccccsssssssssssssss s BEETIR 1 eeraaaassssssssssss SINEESSUSSIUISERERRNNE | | NN OReSRRRRROOES 500
34.1.7. SOftware Portability c.cceeeeeeeeemmmceemiereremmmmmmmmmmomimmmoeesssmmmmsmmmossossssssssnssssssssssssssssssssssssssnsssssssss 501
34.2. EXIENSTONS OVEIVIEW cecviiiiiiiiiiiiiiiiiiiimiiiimiiiiiieimmeimmsssssssssssssssssnnnnnnnsnsnssnmssssssssssssssssssssssssssssssssns 502
34.2.1. zvbb - Vector Basic Bit-manipulation.....ccceeeeeieeeiiieemiiiremmeeemmieemmmooemmioossmsesssssessoossssosssssnes 502
34.2.2. zvbe - Vector Carryless MUltipliCation ... ceeeeeueeiieiiimiiiiemmemiciieimmmicnmemmmmmcosenmmmmoosesnmassssssnsnnses 504
34.2.3. zvkb - Vector Cryptography Bit-manipulationcceeeeeeeeeeiccciienerennmmmmemmiososcoeessssnsmmmmonsnes 505
34.2.4. 7vkg - VeCtor GCM/GMAC ...cciiiiiiiiiiiiiiiiinsmooscsssssssnnmnsmsnnnsnnssmmsssssnssssssmsssmsssssssssssssssssssssssss 506
34.2.5. zvkned - NIST Suite: Vector AES BlOCK CIPhErccuieiieiiiremieemmmcoemmocoessooosssoosssossssssssssssssss 507
34.2.6. zvknh[ab] - NIST Suite: Vector SHA-2 Secure Hashccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiisisccsicsnnnns 508
34.2.7. zvksed - ShangMi Suite: SM4 BLock Cipher.....cccccccemmmmmmmmmmmmmmmmmmmmimmiemeiiniimsiimmimmiisssessnosns 509
34.2.8. zvksh - ShangMi Suite: SM3 Secure Hashcccccciiieiiinnicnmmmmmmmemmmmmmmimmemmiemmmimmmesmioniesssossssnns 510
34.2.9. Zvkn - NIST AlGOrithim SUTTE cccccerieericnimmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmesmessmsssossmsssssssssssssssssssssssssssns 511
34.2.10. zvknc - NIST Algorithm Suite with carryless MULtipLy «...ceeeeemeceeemmmmmccreemmmmceeemmmmeeeemmmmoseens 512
34.2.11. zvkng - NIST Algorithm Suite With GCM ...ccccccciiiiiiiiiiiccinmmiiiiiiissnnnenimimsssssnnsmssssssssssnnssnss 513
34.2.12. Zvks - ShangMi AlQOrithm SUTTE .cceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiimiiessisssssssssssonnnnmensmmssmmmnnnes 514
34.2.13. zvksc - ShangMi Algorithm Suite with carryless multiplicationccccceeeeiieeiicciccccccccccnnnne 515
34.2.14. zvksg - ShangMi Algorithm Suite With GCM.....ccccciiiiiiiiiiiiiiiiiiniiiisssssscssssssonsonsmensessssssnsnns 516
34.2.15. zvkt - Vector Data-Independent EXecution LatenCy....ccceeuueemmmcremmecremoocesmooessoosossosssssosssse 517
34.2.15.1. All Zvbb INSTrUCTIONS ..uuiiiiiiiiciiiiiniiimiinniimmiiiiieiiiiniieeeiiiiisiiasisssisssesssssssssssssssssssssssnns 517
34.2.15.2. All ZVDC INSTIUCTTIONS cueiiieiieniinnionnnmmmmmmmmmmmmmmmmmmemmmmmmemsemsssmsssssssssssssssssssssssssssssssssssssns 517

B0 757200 15 T0C TR T o /=1 o N 518
34.2.15.4. add/SUD With CArlY ..cccceeeeremmmmmmmmiicocoeomeremmmmmmmmmmocosssssesssssssssmsssssssssssssssssssssssssssssssssssnss 518
34.2.15.5. COMPAre aNd SET.ccuceiuremuremmrmmrmecsemcsomsoomssorosssnssssssssssssssssss 518

BC 707200 . T8 A o 0 518

0 = = T N 518

G 7207 1 0 T U Y| T = 518

34.2.15.9. MULLTPLY covveriiiiiiiiiiiiiiiiiiiiiiiiinsiosssnsssnnnnmmmmmmmmmmmmmmmmmmmmmmss 519
34.2.15.10. MULLIPLY-add coeeiiiiiiiiiiimiimiiensiisssosnsonnnnmmmmmmmmmmmmmmmmmmmmmmmmmmssmsssssssssssssssssssssssssssssssssssssss 519
34.215.701. INteger MErge..cccuceiiiiuiciiriimieneesommososssmmmesssssommessssssmosssssssmssssssssssssssssssssssssssssssssssssne 519
34.2.15.12, PEIMNULE ceutiireiniemmcemocomasmmessssmssssssssssssssssssssssssnssssssssssssssssnssssssssssssssssnssnsssnssssnsssnsssnss 519
0 T T 0 01 519
0 T T =] o 519
34.3. INSTIUCTIONS ceviiiiiiiiiiiiiiiiiiiiiiiimmiemmsmssssssssssssssssssnnnssnsnnsnsnss 521
34.3.1. VACSAT.[VV,VS] ceuuirrrmuuiiemmmmminnenmmmmoosoommmmmosssnmmmossssssmsssssssssssssssssssssssssssassssssnsssssssssssssssssnnsssssssns 521
34.3.2. VACSAMLIVV,VS] ceeurremoremncemnnommnsmossmssonsssnsssnsssssssssssnnssnssssnsssssssssssnsssnnssasssnssssssssssssssssnsssnsssnnss 523
B4.3.3. VACSET.[VV,VS] cerruirermmomemmonoesmnonsonsossoossssosssssossnsssssssssssssssssssns 525
34.3.4. VABSEIML IVV,VS] ceurrrnrrmnrmmnremnoomnsomonssssssnsssssnsssssssnsssnnns 527

0 G R TN 1] 529
34.3.6. VABSKI2Wi ceviiiiiiiiiiiiiiiiiiiiiiiiiiniimnsssssossssssssssnnnnnnnnnsnsssssnssssssnsss 531
B T U 533
34.3.8. VANAN.[VV,VX] cerrrerncommnorocomonssnsnnsssnssssssesssonsssssssnsssnsssnsssnss 535
0 T T o= 537

G 0 OV 0T =7 T N 538
BZISWI. VCIMUL [VYA X Rtttccoeneoasnononsncecss diBuEEM b oeceaonsncesncnsons SERREREEERESINRRNSIRENNSY , , , S ERR eI RRR e RRRaes 539
34.3.12. VEIMULN.IVV,VX] cevtrmnommnnemnnemnnemnnemnsmocssnsssnssesssssnssssssnssssssssssssssssnsssssssnsssnsssnnssssssssssssssssssssnsss 541
34.3.13. vclzv .. o eeeeeeee B O POVURURURUINNN . KOPPPOPPUIINNINPRPPPPRPPORIRRY . 543
34,314, VCPOP.V areiuneranommnsmmnoomsoessossnsssnsnss 543
KT RCRLRCIAN S Y——y gy, s OUPPPIII—.. 544
34.3.16. VONSNLVV ciiiiiiiiiiiiiiiiiiiiiiiniiiimiiiciiiiimmsnessemmssessomssssssssmssssssssmmsssssssmssssssssasssssssssnssssssssnssssssss 546

1C 7 30C T 7288 o o 11 R AT USRS SRR, . 548
G T 1 Y =7 TR 550
34.3.19. VIOLIVV,VX] cevveemncemncmmnoommnsmnsssnssnssssssssssonsosssssssssnsssssssssssnssssssssssssssssssssssssnssssssssnsssssssssssnssssns 551
B4.3.20. VIO [VV,VX,VI] covvvueermnoemmmeemmmoommncommnnesmsnssssssssssssssnsssessssssssssssssssssssssssssssessssssssssssssssssssssssns 553

B0 720G 7070 AR = 0 - D2 o I T 555
34.3.22. VSNAZMS.VV ceciiiiiiiinmimmnnnnssmmmmossssommssssssmmssns 558

SO 7 30 05725 THI V=1 g1 S 561
0 T 0 1 T 564

BC 7 0C 7075 JU V= g V737 N 567
34.3.26. VSMAT.[VV,VS] cettiurimmmosmmmcsmmmnsssmossmmossnmsss 570
3B4.3.27. VWSLLIVV, VX, VT e ceiiieiimiiiinenmmmmioieemmmmooeeemmmnssennmssessesnsssssssnnsssssssnsssssssssnssssssssnmsssssssnssnsssssnsnns 573
34.4. Crypto Vector Cryptographic INStrUCTIONS cccceeeeeeremimmmmmmimcconeneeeemmmmmmmmmmmossssosessssssssssssssssssssssssns 575
34.5. Vector Bitmanip and Carryless Multiply INStrUCTIONS .ccuueriiiemiiremmiceemmocemmosemmmocemsocoossocosssoscsss 576
34.6. SUPPOItING SAIl COUE ciriiimiiiiiciiiinnmmmmmmmmmmmmmmsososossssssmmsmssnss 579
35. Control-flow INtegrity (CFI)cccccciiiiiiiiimmmmiiiiiiiiiinneneeeeesossssnnssssssssssssnnnsssssssssssnsnssssssssssssnnnnse 588
35.1. Landing Pad (ZiCfilP) ceeeeeeremmmmmmmmceememeeeermmmmmmmmmmsoessosessssssmmmmssssssssssssssnssssssssssssssssssssssssssssnsssssssss 589
35.1.1. Landing Pad ENfOrCemMENTcccuuuicciiiieeerimimmmmmmmioecmmmeesesmmmmmmmmmosssssosssssssssssssssssssssssssssssssssas 590
35.1.2. Landing Pad INSTrUCTION...ccuuuuieiococemeremmmmmmmmmmmososssssssssssmsssssssssssssssssssnssssssssssssssssssssssssssssnse 592

35.2. SNAAOW StACK (ZICTISS) veveerruerermueemmmomommnnemmmonermnooommosesssossssssesssns 593

35.2.1. Zicfiss INSTruCtioNS SUMMAIY c.ceceiiieiiiiremmeoremmomoemmomomsoosossosssssosssssssosssssssssssssosssssssssssssssssns 594

35.2.2. SNAAOW StACK POINTEL (SSP)eccceeeceermeemmmomommmooommnnesmsnossoosossosssssossssssssssssssssssssssosssssssosssssonsons 594
35.2.3. ZicfisSS INSIrUCTIONS . ccceeeeiieiiiciiimninnummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmsmsssossssssosssssssssssssssssssssssssssssssssnnne 595
35.2.4. Push 10 the Shadow StacK.......ccccccceeeriiimiiniiiiiminninimmocnesmmmnssessommcssssssmmsesssssomssssssssossssssssne 595
35.2.5. Pop from the Shadow StacKccceeeeiremmmmiieemimmmnieemmmmiiemmmmmieessmmmosossmmmssssssmmsssssssmassssssssns 596
35.2.6. Read ssp iNt0 @ REQISIEN ccvviiiiiiiiiiiiiiieiiiiiiiiiiiiiiieeiieiioeenmmmoesesmmmmossosmmmsssssssmnssssssnmmsssssnnns 599
35.2.7. Atomic Swap from a Shadow Stack LOCAtioN .c...eeeueeeiiieeimieemmeoeemmoeesmooesssosossoossssoossssosssss 601
36. RV32/64G INStruction Set LISTINGScccccoiiimmiiiiiimiiiiniiiiiininisiocnnsessssnnsssssssnssssssnssssssssssssssnnes 603
37. EXtending RISC-Vcoccciiiiiiiiiiiiiiiiiiiiniiiinsisinssioissssssssssssssoss 615
37.1. EXteNSION TErMINOLOQY «.ccceueeemmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmessmmmmossmssmmssmsssssssssssssssssssssssssssssssssssnnssnsssssnnss 615
37.1.1. Standard versus Non-Standard EXTENSION ..cccccciiiiiiiiiiiiiiiiiiiiiiiiiiiisssiississssssnnneenmenmmmmmmneneens 615
37.1.2. Instruction Encoding Spaces and PrefiXescueeeeecccieiiiesmmmmmmmmomissossssosssssmsmsmsssssssssssssssses 615
37.1.3. Greenfield versus Brownfield EXtENSIONS c..cccciiiiiiiiiiiiiiiiiiiiiiiississsssssssssssssssssonsonnnnnnnnnsmmsnnnes 616
37.1.4. Standard-Compatible Global ENCOAINGS ccccuiiiiiiiiiiiiiiiiiiiiiiiimiimmiisssssssssssossssssnnssssennssnssnsssncs 617
37.1.5. Guaranteed Non-Standard ENCOding SPACE ...ccccevvieiiiiiiiiiimiimmiiiessossssssssssssssossssssssssssnsssnenss 617
37.2. RISC-V Extension Design PhilOSOPNY....ccceiuiuiiemmmmmiiemmmmmiemeemmmmcmeemmmmosossmmmmsssssmmmmsssssmmsssssnsans 617
37.3. Extensions within fixed-width 32-bit instruction formatcccccccccveeiiiiiiiiiiiiiiiiiiiiiiiiiiciiciciennnens 618
37.3.1. Available 30-bit instruction encoding SPACES ...cccceerreerieciscsscssnnmmnmmmmmmmmmmmmmmmmmmmmmmmmmmssssssoss 618
37.3.2. Available 25-bit instruction encoding SPACES ...cccccerreereecsccssisssnnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmomssess 618
37.3.3. Available 22-bit instruction enNcoding SPACESccceiiiiiriiiiiiiiiiiiiinsesssssssssssossnssosssnsssnsssnnencs 619
37.3.4. OtNEr SPACES .cuciuureurremmremmmemonomonomonsnssssnnsonsssssssnssssssssssssssssssssssssnssssssssssssssssnssssssssssssssssssssass 619
37.4. Adding aligned 64-bit iNStruction eXtENSTONS...ccciviriimmiiseoiororemmmmmmmmmmmsssssssssssnssssssssssssssssssssssss 619
37.5. Supporting VLIW €nCOAINGS cccevveriiimiiiiiiiiiimmiimmiemieemmmssssssssssssssssnnnnsnnsnsnsssnsssssssssssssssssssssssssssssss 619
37.5.1. Fixed-size iNSTrUCTION QroUD «.cceeeremmmmmmmmmmimmmimmiiimiimiiemimmmmossissmmsssssssssssssssssssssssssssssnssssssasnsnns 619
37.5.2. Encoded-Length GrOUPS ...ccceceieimmmecnessmmmesossmmmnssssmmmmesssssmmssssssssssssssssasssssssssssssssssssssssssssnne 619
37.5.3. Fixed-Size Instruction BUNALEScccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiiisiinnnmmmmmmmmmmmmmmmmeemessssossesssssssens 620
37.5.4. ENd-0Of-Group Dits 1N PrefiX ccccceeceeiiimemmiiemmioeemmooommoooossooossssssssssssssssssssssssossssssssssssssssons 620
38. ISA Extension Naming CONVENTIONS......ccccciiiiuiiiiimmmiiionmmmiiosimmmesossnssssosssssssssssnsssssssssssssssssssssns 621
38.1. CaSE SENSIHIVITY tevveruuumicerererenmmmmmmmmmmmomomseeessnmmmmmsmmssssssssssssssssssssnsssnssss 621
38.2. Base INteger ISA ..cciiiiiiiiiiiiuciemmimminonssmmmnssssmmmssssssmmossssssmssesssssossns 621
38.3. Instruction-Set EXeNSTON NaMEScccccemmmmmmmmmmmmmimmiiemiiiiiiiiiiiiiiiiiemiimmiossssssssssssssssssssssnnnnnsnnss 621
0 g T 1= T 0 =R 621
38.5. Additional Standard Unprivileged EXtension Namescccceeiiiiiiiiiiiiiiiiiissiissscssssssssssonnnnnnnnnnnes 621
38.6. Supervisor-level Instruction-Set EXtension NamMESccuueeeeiieeemmmmmmmmmmimocossoosssssmmmmmmmssssssssssses 622
38.7. Hypervisor-level Instruction-Set EXtension NAmMEScccueeeeereeermmmmmmmmmicoconoocesssmmmmmmmmssssssssesnes 622
38.8. Machine-level Instruction-Set EXtension Namescccccccccccicciemmemmmmmmmeemeemeeeeieenienmimmiieeieenaenns 622
38.9. Non-Standard EXtension Namescccciiiiiiiiiiiiiiiniiiiniicsiosssnnnnmmmnmmmmmmmmmmmmmmssmmssossssssssssssssssssssss 622
38.10. Version NUMDEIS ...ccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiosisssssssssnnnnmmmmmmmmmmmmmmmsmsssmmsomssssssssssssssssssssssssssssssssss 623
38.11. Subset Naming CoNVENTION ...cciiiiiiiiiiiiiiesiicissossssssmmmmmmmmmmmmmmmmmmmmmmmmmmmssmsssmsmosssssssssssssssssssssssssss 623
39. History and AckNOWLEAgMENTSccccviiiuiiiimiiiiimiimimmiiimmimimssoomsissmssessnssssssssssssssssssssssssssssssss 625
39.1. "Why Develop a new ISA?" Rationale from Berkeley Groupccceceeeeeeeemmmmmmmmmmococsoocesosssssssssnce 625
39.2. History from Revision 1.0 of ISA ManUal....ccceeieimiiiemmeremmoremmconsoooossoooossosssssssssssossssssssssssssons 626

39.3. History from Revision 2.0 of ISA MaNUAL c..cceeuieiiiireimieeemmoeommoceommooosmoooossossssssesssssssssssssssssssons 627

39.4. ACKNOWIEAGMENTS ceuuiiiiiiiimmmiommmnnmmmmmsmmmssmmosssnssssssssssssssssnsssssnsons 629

39.5. HiStory from REVISTON 2.1 cuuiiiiiiieiiiiemmeoremmoommmoesmmosossosssons 629
39.6. ACKNOWLEAGMENTS w.uciiiiuiiiiiiiiuinieiimmineememmmnsesmmmmssessommosssssmosssssssmnsssssssnmsssssssssssssssssnssssssssnssssss 629
39.7. History from REVISTON 2.2 ..cccviiiiiiimiiiieoieiemenmmmmmmmmmmmooosssssssssmssssmsssnsnss 630
39.8. ACKNOWIEAGMENTS..ciiiuuiiiiimmmnnsmmmmmonsssmmmeossssmmmesssssmmsss 630
39.9. History fOr REVISTON 2.3 .ciiuiiiiieemmiremmmooemmoosssonesssoosssssssssosss 630
3910, FUNAING cotetirimimmmmmmmmiiononomsossmmmmmmmmmsssoss 630
Appendix A: RVWMO Explanatory Material, Version O.1.........cccccceeiiieiiieiieeieeeooeooonsssossnssosnsssssnsnnce 631
A1, WHY RVWIMO? c.ciiiiiiiiimmmmniiisiossmmmmmssssssssssnnssnssssssses 631
A2, LItMUS TESES teviiiiiiiiiiiiiiiiiiinmsssosssssssssnnnnnnnsmsnssnssnsssssnsssnnnsnsnnns 631
A.3. Explaining the RVWMO RULES....cccuuuuirrimmmmiiemmmmmieermmmmosesmmmmosssmmmmsssssmmsssssssmmnsssssssmnssssssssnsssssnns 633
A.3.1. Preserved Program Order and Global Memory Ordercccccceeeeceeeemmemcnscmmmmcsssssmmosssssonsoses 633
ANRC T2 10 7- To IR 7= LT == [0 o 634
/ARG T0C TR o 1'8 1111 4T 2R= 04 1.2 636
A3.4, ProgreSss aXiOM.ceeeeeeeeeeeeeeemesssssssssssssssssssssssssssssssnssssssnsssssssssssssnsss 637
A.3.5. Overlapping-Address Orderings (RULES 1-3) cccceuureermmmmmcreemmmmmnoemmmmmseeenmmmssossmmmssssssmmnssssnnes 638
A.3.6. FENCES (RULE 4) ceviiiiiiiiiiiniemiiemonemmneemnsmmoomnsonssonssons 640
A.3.7. Explicit Synchronization (RULES 5-8) c.cccuuirrimmmiiiemmemmeieemmmmoseemmmmosoonmmmsosssnmsmssssssssssssssnsansons 640
A.3.8. Syntactic Dependencies (RULES 9-11) cocieiiuiiiireiieeremmmmmmmmmmomososoessssmmmmmmmmonosssssssssssssssnsnssssses 642
A.3.9. Pipeline Dependencies (RULES 12-13) ccciireeerrmmmmmmmmmmoocosomorensemmmommmssosssosesssssssssnsssssssssssssssnss 645
A4, BEYONd Main MEMONIY cuuceruiieemmioemmmooemmossssossssmoosssssssnssosssssssssssssssssssssssssssossssssssssssssssssssssosssssssssas 646
A.4.1. Coherence and Cach@ability cccceueeeeuieemiiremmieremmioeemmeemmmoeemsmoosmsoossssosesssosssnossssssssssosssssssssssss 647
A4.2. T/O OrderinNgcccccccccceeececceeceessesseesssnsss 647
A.5. Code Porting and Mapping GUIAELINES . ..cccceeieerieriicercssssonnnmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmssssssossssssssssssss 648
A.6. Implementation GUIAELINES ..cieeiereriiiiiimiiiieieiieeeremmmmmmmmmmommomoesenssmmmommmssssssssssssssssssssssssssssssssssnss 654
A.6.1. Possible FUtUre EXtENSTONS. ...ccciiiiiiiiiiiinennimmmmmmmmmeieeiiiiiienieaiiietiosiiesiissmesssessssssssssssssssssssssnns 656
A7, KNOWN ISSUES c.uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiissiomssssmommmmmmessssssssssssosssmsmssssssssssssssssnmmmsssssssssssssssssssnsnns 656
A7.1. MIXEA-SIZE RSW L.iiiiiiiiiiiiiiiniiinninnnsoiennnnmmmmmmmmmmmmmmmmmmmmssmsssns 657
Appendix B: Formal Memory Model Specifications, Version 0.1........ccccccccccmmmreeeeeeeeeeneeeeeeeeeeeeeeee 659
B.1. Formal Axiomatic Specification in ALOYcccuueceerimierermmmmmmmmmimomemooeeesmsmmmmmmssssossssssssssssssssssssssssss 659
B.2. Formal Axiomatic Specification iN HErdcccceeiiiiiiiiiiiieiiiieeimmmoieeemmmooeeommmoeoesmmmsoosssssssssssssnne 663
B.3. An Operational Memory MOGEL ...cceuueeiiieemmiemmiimemmooemmeoosmooessoossssosssssosssssssssssssssssssssssssssssssssosss 666
B.3.1. Intra-instruction Pseudocode EXECULION ..ccccciiiriiiiiiesiscssscnnnmmnmenmmmmmmmmmmmmmmmmmemsommssmssssssossssss 669
B.3.2. Instruction INStance STatecccciiiiiiiiiiiiiiiiiiiiiiiimiimsssosssssosssssssnnnnnnmmnsmmnsssmmmsssssssmsssssssssssssssss 671
00 J0C TR o = g) - U 672
B.3.4. Shared MeEmMOIY STAtE ...cccieiureieremmremmnemormmsemsosssossnssssssssssssssss 672
B.3.5. TranSitiONS . .cccccumummmmmmiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieessessassssssssssssssssnsssssnnnsnnsssnnmnssssmsssssssssssssssssss 673
370 TR 70 RN =Y o 0 T 10153 00T 1) 673
B.3.5.2. Initiate memory load OPErationscccccceierermemmmmmmmmimonciooeessnmmmmemmosossosssossssssssssssssssssssses 673
B.3.5.3. Satisfy memory load operation by forwarding from unpropagated storescccccccceeee. 674
B.3.5.4. Satisfy memory load operation from MEeMOIY.....cceeuueeiierimmiieeremmmmoeeemmmmcoossmmmsoosssmsnnocs 675
B.3.5.5. Complete load OPEratioNs ..c..cceeeeieemmicremmeemmmoeesmmooemsooossmossssossssssesssosssssossssssssssssssssssssss 675

B.3.5.6. Early sc failicccccciiinmiiiiiiiiinnmeseiiiissssnnssssssssssssnnsssssssns 676

L TG T T - =Y - S 676

B.3.5.8. Initiate memory store operation fOOTPriNtS c.uceeieieeiiieeiiiieeimeemmieeeemieeemmeeomscessoeessonces 676
B.3.5.9. Instantiate memory store operation ValUESc.cceeeereeieiermmmmeciermmmmncerenmommooeeemmonsosenmane 676
B.3.5.10. Commit Store iNStrUCiON ...cccciiiiiiiiiiiiiiiiiiiiimiiiinsssssosssssssnsonnmnnsmnsmmnsssssssssmsssmmsssssssssssss 676
B.3.5.11. Propagate Store Operationcccceeeremeeeemmceeoeoeoeenemmmmmmmmmcosssssssessssssssssssssssssssssssssssssnsnns 677
B.3.5.12. Commit and propagate store operation of an sc.....ccccceeeerrmmmeceeemmemecieenmemocieemmemooseeennans 678

2 T8 T8 0 - o 678
B.3.5.14. Complete Store OPerationscccceeeecireemmmmicreemmmmomeemmmmomermsmmeosssnmmsssssonsassssssssssssssnnsane 678
B.3.5.15. Satisfy, commit and propagate operations of an AMO.....ccccceerrrremmmmmmocccecocerenmmmmmmmoncs 679
B.3.5.16. COMMIt fENCE.ceuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiiinniesssssssssssssssssssnsssnssssssssssssssssssssnsssssssssssss 679
TR0 TE T 17 20 21T)£ (=T gl Y- [679
B.3.5.18. REQISTEr WILE ceeviiiiiiiiiioioiinnimmmmmmmmmmmmmoossssssssssmsmssnss 680
B.3.5.19. Pseudocode internal StEPcieeeeeuriieimmiieiiermmmmiieemmmmoieemmmmsomeesmmmsssesssonsossosssmnsssssnsansos 680
B.3.5.20. FiNish iNSIrUCTION «.uueuuiummmmmmmmmmmmmmmmmmmmmmmmmmmmimmmiimiiemiesmiossosssossssssssssssssssssssssssssnssssnssnssnss 680

2 20 T8 T g7) 681
Appendix C: Vector Assembly Code EXaMPLEScccceeuerriimimmemimeieeeeeeeememmmmmmmnsseeeeesesommmmmmsnssssssses 682
C.1. Vector-vector add EXamPLE...ccceeeeeeeeremmcemmoemonomosmmssmssemsssnssnnss 682
C.2. Example with mixed-width mask and COMPULE. ..cccuiiimiiiiiremmmmiiremmmmeioremmmmmoooemmmmmosesmmasossonmanses 682
(CSSRNVIENNC DY EXAMDICH Tttt ... coueecssncscssncesss st MR conoaonsncasssncsss BESREEEEERERITREIRNESt , , . SRS EREEReRR e aaaes 683
C.4. Conditional @XaMPLE .ccceeereiiiimimceeiererenmmmmmmmmmmomooomooeessmmmsssmmssssssssssssssssssssnssssssssssssssssssssssssssssssssns 683
C.5. SAXPY EXAMPLE cevuerunrmanrmmnremncomnsommoomssonssssssssnssssssessnsssnsssssssnns 683
C.6. SGEMM EXAMPLE evuerueimiemmrmmrmmromsomnsesesonsoososssssssnssosssssnsssnnssss 684
C.7. Division approximation @XamPLe.....ccceeeeeueeremmmmmeieemmmmmimeeemmmmoooeemmmmosssmmmmsssssnmansssssssansssssnnsnsssssnns 689
C.8. Square root approxXimation EXaMPLE ..cccceeerrrmeemuuiiomeeeeeeremmmmmmmmmmosooosssossssssssssssssssssssssssssssssnsnsnss 689
C.9. C standard library Strcmp @XamPLe ...ccceeeeerrmmmmemmmimomeeoocereremmmmmmmmsosossssssssssssssssssssssssssssssssssnsnsnss 689
C.10. Fractional LmUL @XamPLe......ceeeeeermmieemmocoemmoossmmosorsossossosssssosonssssosssssssssssssssssssssssnssssssssssssssssssans 690
Appendix D: Calling Convention for Vector State (Not authoritative - Placeholder Only)........ 694
T =S 695

Preamble | Page 1

Preamble

Contributors to all versions of the spec in alphabetical order (please contact editors to suggest
corrections): Derek Atkins, Arvind, Krste Asanovic¢, Rimas AviZienis, Jacob Bachmeyer, Christopher F.
Batten, Allen J. Baum, Abel Bernabeu, Alex Bradbury, Scott Beamer, Hans Boehm, Preston Briggs,
Christopher Celio, Chuanhua Chang, David Chisnall, Paul Clayton, Palmer Dabbelt, L Peter Deutsch,
Ken Dockser, Paul Donahue, Aaron Durbin, Roger Espasa, Greg Favor, Andy Glew, Shaked Flur, Stefan
Freudenberger, Marc Gauthier, Andy Glew, Jan Gray, Gianluca Guida, Michael Hamburg, John Hauser,
John Ingalls, David Horner, Bruce Hoult, Bill Huffman, Alexandre Joannou, Olof Johansson, Ben Keller,
David Kruckemyer, Tariq Kurd, Yunsup Lee, Paul Loewenstein, Daniel Lustig, Yatin Manerkar, Luc
Maranget, Ben Marshall, Margaret Martonosi, Phil McCoy, Nathan Menhorn, Christoph Miillner, Joseph
Myers, Vijayanand Nagarajan, Rishiyur Nikhil, Jonas Oberhauser, Stefan O’Rear, Markku-Juhani O.
Saarinen, Albert Ou, John Ousterhout, Daniel Page, David Patterson, Christopher Pulte, Jose Renau,
Josh Scheid, Colin Schmidt, Peter Sewell, Susmit Sarkar, Ved Shanbhogue, Brent Spinney, Brendan
Sweeney, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy Thorn, Philiopp Tomsich, Caroline
Trippel, Ray VanDeWalker, Muralidaran Vijayaraghavan, Megan Wachs, Paul Wamsley, Andrew
Waterman, Robert Watson, David Weaver, Derek Williams, Claire Wolf, Andrew Wright, Reinoud Zandijk,
and Sizhuo Zhang.

This document is released under a Creative Commons Attribution 4.0 International License.

This document is a derivative of “The RISC-V Instruction Set Manual, Volume I: User-Level ISA
Version 2.1” released under the following license: ©2010-2017 Andrew Waterman, Yunsup Lee, David
Patterson, Krste Asanovic. Creative Commons Attribution 4.0 International License. Please cite as:
“The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 20191214-draft”,
Editors Andrew Waterman and Krste Asanovic, RISC-V Foundation, December 2019.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Preface | Page 2

Preface
This document describes the RISC-V unprivileged architecture.

The ISA modules marked Ratified have been ratified at this time. The modules marked Frozen are not
expected to change significantly before being put up for ratification. The modules marked Draft are
expected to change before ratification.

The document contains the following versions of the RISC-V ISA modules:

Base Version Status
RV32I 21 Ratified
RV32E 2.0 Ratified
RV64E 2.0 Ratified
RV641 21 Ratified
RV128I 1.7 Draft

Extension Version Status

Zifencei 2.0 Ratified
Zicsr 2.0 Ratified
Zicntr 2.0 Ratified
Zihintntl 1.0 Ratified
Zihintpause 2.0 Ratified
Zimop 1.0 Ratified
Zicond 1.0 Ratified
M 2.0 Ratified
Zmmul 1.0 Ratified
A 2.1 Ratified
Zawrs 1.01 Ratified
Zacas 1.0 Ratified
Zabha 1.0 Ratified
RVWMO 2.0 Ratified
Ztso 1.0 Ratified
cMmo 1.0 Ratified

F 2.2 Ratified

D 2.2 Ratified

Q 2.2 Ratified
Zfh 1.0 Ratified
Zfhmin 1.0 Ratified
Zfa 1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Preface | Page 3

Base Version Status
Zfinx 1.0 Ratified
Zdinx 1.0 Ratified
Zhinx 1.0 Ratified
Zhinxmin 1.0 Ratified
(ot 2.0 Ratified
Zce 1.0 Ratified
B 1.0 Ratified

P 0.2 Draft

\' 1.0 Ratified
Zbkb 1.0 Ratified
Zbkc 1.0 Ratified
Zbkx 1.0 Ratified
Zk 1.0 Ratified
Zks 1.0 Ratified
Zvbb 1.0 Ratified
Zvbc 1.0 Ratified
Zvkg 1.0 Ratified
Zvkned 1.0 Ratified
Zvknhb 1.0 Ratified
Zvksed 1.0 Ratified
Zvksh 1.0 Ratified
Zvkt 1.0 Ratified
Zicfiss 1.0 Ratified
Zicfilp 1.0 Ratified

The changes in this version of the document include:

® The inclusion of all ratified extensions through March 2024.

® The draft Zam extension has been removed, in favor of the definition of a misaligned atomicity
granule PMA.

® The concept of vacant memory regions has been superseded by inaccessible memory or 1I/0
regions.

Preface to Document Version 20191213-Base-Ratified

This document describes the RISC-V unprivileged architecture.

The ISA modules marked Ratified have been ratified at this time. The modules marked Frozen are not
expected to change significantly before being put up for ratification. The modules marked Draft are
expected to change before ratification.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Preface | Page 4
The document contains the following versions of the RISC-V ISA modules:

Base Version Status

RVWMO 2.0 Ratified
RV32I 2.1 Ratified
RV641I 2.1 Ratified
RV32E 1.9 Draft
RVi128I 1.7 Draft

Extension Version Status

M 2.0 Ratified
A 241 Ratified
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
Cc 2.0 Ratified
Counters 2.0 Draft
L 0.0 Draft
B 0.0 Draft
J 0.0 Draft
T 0.0 Draft
P 0.2 Draft
v 0.7 Draft
Zicsr 2.0 Ratified
Zifencei 2.0 Ratified
Zam 0.7 Draft
Ztso 0.7 Frozen

The changes in this version of the document include:

® The A extension, now version 2.1, was ratified by the board in December 2019.
® Defined big-endian ISA variant.
® Moved N extension for user-mode interrupts into Volume II.

® Defined PAUSE hint instruction.
Preface to Document Version 201906 08-Base-Ratified
This document describes the RISC-V unprivileged architecture.

The RVWMO memory model has been ratified at this time. The ISA modules marked Ratified, have
been ratified at this time. The modules marked Frozen are not expected to change significantly before
being put up for ratification. The modules marked Draft are expected to change before ratification.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Preface | Page 5
The document contains the following versions of the RISC-V ISA modules:

Base Version Status

RVWMO 2.0 Ratified
RV32I 2.1 Ratified
RV641I 2.1 Ratified
RV32E 1.9 Draft
RVi128I 1.7 Draft

Extension Version Status

Zifencei 2.0 Ratified
Zicsr 2.0 Ratified
M 2.0 Ratified
A 2.0 Frozen
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
Cc 2.0 Ratified
Ztso 0.7 Frozen
Counters 2.0 Draft
L 0.0 Draft
B 0.0 Draft
J 0.0 Draft
T 0.0 Draft
P 0.2 Draft
% 0.7 Draft
Zam 0.7 Draft

The changes in this version of the document include:

® Moved description to Ratified for the ISA modules ratified by the board in early 2019.
® Removed the A extension from ratification.
® Changed document version scheme to avoid confusion with versions of the ISA modules.

® Incremented the version numbers of the base integer ISA to 2.1, reflecting the presence of the
ratified RVWMO memory model and exclusion of FENCE.I, counters, and CSR instructions that were
in previous base ISA.

® Incremented the version numbers of the F and D extensions to 2.2, reflecting that version 2.1
changed the canonical NaN, and version 2.2 defined the NaN-boxing scheme and changed the
definition of the FMIN and FMAX instructions.

® Changed name of document to refer to "unprivileged" instructions as part of move to separate ISA
specifications from platform profile mandates.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Preface | Page 6

® Added clearer and more precise definitions of execution environments, harts, traps, and memory
accesses.

® Defined instruction-set categories: standard, reserved, custom, non-standard, and non-conforming.

® Removed text implying operation under alternate endianness, as alternate-endianness operation
has not yet been defined for RISC-V.

® Changed description of misaligned load and store behavior. The specification now allows visible
misaligned address traps in execution environment interfaces, rather than just mandating invisible
handling of misaligned loads and stores in user mode. Also, now allows access-fault exceptions to
be reported for misaligned accesses (including atomics) that should not be emulated.

® Moved FENCE.I out of the mandatory base and into a separate extension, with Zifencei ISA name.
FENCE.I was removed from the Linux user ABI and is problematic in implementations with large
incoherent instruction and data caches. However, it remains the only standard instruction-fetch
coherence mechanism.

® Removed prohibitions on using RV32E with other extensions.

® Removed platform-specific mandates that certain encodings produce illegal-instruction exceptions
in RV32E and RV64I chapters.

® Counter/timer instructions are now not considered part of the mandatory base ISA, and so CSR
instructions were moved into separate chapter and marked as version 2.0, with the unprivileged
counters moved into another separate chapter. The counters are not ready for ratification as there
are outstanding issues, including counter inaccuracies.

® A CSR-access ordering model has been added.

® Explicitly defined the 16-bit half-precision floating-point format for floating-point instructions in
the 2-bit fmt field.

® Defined the signed-zero behavior of FMIN.fmt and FMAX.fmt, and changed their behavior on
signaling-NaN inputs to conform to the minimumNumber and maximumNumber operations in the
proposed IEEE 754-201x specification.

® The memory consistency model, RVWMO, has been defined.

® The "Zam" extension, which permits misaligned AMOs and specifies their semantics, has been
defined.

® The "Ztso" extension, which enforces a stricter memory consistency model than RVWMO, has been
defined.

® Improvements to the description and commentary.

® Defined the term IALIGN as shorthand to describe the instruction-address alignment constraint.

® Removed text of P extension chapter as now superseded by active task group documents.

® Removed text of v extension chapter as now superseded by separate vector extension draft
document.

Preface to Document Version 2.2

This is version 2.2 of the document describing the RISC-V user-level architecture. The document
contains the following versions of the RISC-V ISA modules:

Base Version Draft Frozen?

Rv32I 20 Y

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Preface | Page 7

Base Version Draft Frozen?

RV32E 1.9 N
RV641 2.0 Y
RV1281 1.7 N
Extension Version Frozen?
M 2.0 Y
A 2.0 Y
F 2.0 Y
D 2.0 Y
Q 2.0 Y
L 0.0 N
C 2.0 Y
B 0.0 N
J 0.0 N
T 0.0 N
P 0.1 N
\" 0.7 N
N 11 N

To date, no parts of the standard have been officially ratified by the RISC-V Foundation, but the
components labeled "frozen" above are not expected to change during the ratification process beyond
resolving ambiguities and holes in the specification.

The major changes in this version of the document include:

® The previous version of this document was released under a Creative Commons Attribution 4.0
International License by the original authors, and this and future versions of this document will be
released under the same license.

® Rearranged chapters to put all extensions first in canonical order.
® Improvements to the description and commentary.

® Modified implicit hinting suggestion on JALR to support more efficient macro-op fusion of LUI/JALR
and AUIPC/JALR pairs.

® (Clarification of constraints on load-reserved/store-conditional sequences.
® A new table of control and status register (CSR) mappings.
® Clarified purpose and behavior of high-order bits of fcsr.

® Corrected the description of the FnMADD.fmt and FNMSUB.fmt instructions, which had suggested the
incorrect sign of a zero result.

® Instructions FMv.S.X and FMV.X.S were renamed to FMV.W.X and FMV.X.W respectively to be more
consistent with their semantics, which did not change. The old names will continue to be supported
in the tools.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Preface | Page 8

Specified behavior of narrower (<FLEN) floating-point values held in wider f registers using NaN-
boxing model.

Defined the exception behavior of FMA(«, ©, gNaN).

Added note indicating that the P extension might be reworked into an integer packed-SIMD
proposal for fixed-point operations using the integer registers.

A draft proposal of the V vector instruction-set extension.
An early draft proposal of the N user-level traps extension.
An expanded pseudoinstruction listing.

Removal of the calling convention chapter, which has been superseded by the RISC-V ELF psABI
Specification (RISC-V ELF PsABI Specification, n.d.).

The C extension has been frozen and renumbered version 2.0.

Preface to Document Version 2.1

This is version 2.1 of the document describing the RISC-V user-level architecture. Note the frozen
user-level ISA base and extensions IMAFDQ version 2.0 have not changed from the previous version of
this document (Waterman et al., 2014), but some specification holes have been fixed and the
documentation has been improved. Some changes have been made to the software conventions.

Numerous additions and improvements to the commentary sections.
Separate version numbers for each chapter.

Modification to long instruction encodings >64 bits to avoid moving the rd specifier in very long
instruction formats.

CSR instructions are now described in the base integer format where the counter registers are
introduced, as opposed to only being introduced later in the floating-point section (and the
companion privileged architecture manual).

The SCALL and SBREAK instructions have been renamed to ECALL and EBREAK, respectively. Their
encoding and functionality are unchanged.

Clarification of floating-point NaN handling, and a new canonical NaN value.
Clarification of values returned by floating-point to integer conversions that overflow.

Clarification of Lr/sc allowed successes and required failures, including use of compressed
instructions in the sequence.

A new RvV32E base ISA proposal for reduced integer register counts, supports MAC extensions.
A revised calling convention.

Relaxed stack alignment for soft-float calling convention, and description of the RV32E calling
convention.

A revised proposal for the ¢ compressed extension, version 1.9 .

Preface to Version 2.0

This is the second release of the user ISA specification, and we intend the specification of the base
user ISA plus general extensions (i.e.,, IMAFD) to remain fixed for future development. The following
changes have been made since Version 1.0 (Waterman et al., 2011) of this ISA specification.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Preface | Page 9

® The ISA has been divided into an integer base with several standard extensions.
® The instruction formats have been rearranged to make immediate encoding more efficient.

® The base ISA has been defined to have a little-endian memory system, with big-endian or bi-
endian as non-standard variants.

® | oad-Reserved/Store-Conditional (LR/sC) instructions have been added in the atomic instruction
extension.

® AM0s and LR/SC can support the release consistency model.
® The FENCE instruction provides finer-grain memory and I/0 orderings.

® An AMo for fetch-and-xor (AMOX0R) has been added, and the encoding for AMOSWAP has been changed
to make room.

® The AUIPC instruction, which adds a 20-bit upper immediate to the pc, replaces the rRDNPC instruction,
which only read the current pc value. This results in significant savings for position-independent
code.

® The JAL instruction has now moved to the u-Type format with an explicit destination register, and
the J instruction has been dropped being replaced by JAL with rd=xe. This removes the only
instruction with an implicit destination register and removes the J-Type instruction format from the
base ISA. There is an accompanying reduction in JAL reach, but a significant reduction in base ISA
complexity.

® The static hints on the JALR instruction have been dropped. The hints are redundant with the rd and
rs1 register specifiers for code compliant with the standard calling convention.

® The JALR instruction now clears the lowest bit of the calculated target address, to simplify hardware
and to allow auxiliary information to be stored in function pointers.

® The MFTX.S and MFTX.D instructions have been renamed to FMv.X.S and FMV.X.D, respectively. Similarly,
MXTF.S and MXTF.D instructions have been renamed to FMV.S.X and FMV.D.X, respectively.

® The MFFSR and MTFSR instructions have been renamed to FRCSR and FSCSR, respectively. FRRM, FSRM,
FRFLAGS, and FSFLAGS instructions have been added to individually access the rounding mode and
exception flags subfields of the fcsr.

® The FMV.X.S and FMV.X.D instructions now source their operands from rs7, instead of rs2. This
change simplifies datapath design.

® FCLASS.S and FCLASS.D floating-point classify instructions have been added.
® A simpler NaN generation and propagation scheme has been adopted.

® For Rv32I, the system performance counters have been extended to 64-bits wide, with separate
read access to the upper and lower 32 bits.

® Canonical NoP and Mv encodings have been defined.

® Standard instruction-length encodings have been defined for 48-bit, 64-bit, and >64-bit
instructions.

® Description of a 128-bit address space variant, Rv128, has been added.

® Major opcodes in the 32-bit base instruction format have been allocated for user-defined custom
extensions.

® A typographical error that suggested that stores source their data from rd has been corrected to
refer to rs2.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 1. Introduction | Page 10

Chapter 1. Introduction

RISC-V (pronounced "risk-five") is a new instruction-set architecture (ISA) that was originally designed
to support computer architecture research and education, but which we now hope will also become a
standard free and open architecture for industry implementations. Our goals in defining RISC-V
include:

A completely open ISA that is freely available to academia and industry.

A real ISA suitable for direct native hardware implementation, not just simulation or binary
translation.

An ISA that avoids "over-architecting" for a particular microarchitecture style (e.g., microcoded, in-
order, decoupled, out-of-order) or implementation technology (e.g., full-custom, ASIC, FPGA), but
which allows efficient implementation in any of these.

An ISA separated into a small base integer ISA, usable by itself as a base for customized
accelerators or for educational purposes, and optional standard extensions, to support general-
purpose software development.

Support for the revised 2008 IEEE-754 floating-point standard. (ANSI/IEEE Std 754-2008, IEEE
Standard for Floating-Point Arithmetic, 2008)

An ISA supporting extensive ISA extensions and specialized variants.

Both 32-bit and 64-bit address space variants for applications, operating system kernels, and
hardware implementations.

An ISA with support for highly parallel multicore or manycore implementations, including
heterogeneous multiprocessors.

Optional variable-length instructions to both expand available instruction encoding space and to
support an optional dense instruction encoding for improved performance, static code size, and
energy efficiency.

A fully virtualizable ISA to ease hypervisor development.

An ISA that simplifies experiments with new privileged architecture designs.

Commentary on our design decisions is formatted as in this paragraph. This non-
o normative text can be skipped if the reader is only interested in the specification
itself.

The name RISC-V was chosen to represent the fifth major RISC ISA design from UC
Berkeley (RISC-I (Patterson & Séquin, 1981), RISC-II (Katevenis et al,, 1983), SOAR

e (Ungar et al., 1984), and SPUR (Lee et al., 1989) were the first four). We also pun on
the use of the Roman numeral "V" to signify "variations" and "vectors", as support for
a range of architecture research, including various data-parallel accelerators, is an
explicit goal of the ISA design.

The RISC-V ISA is defined avoiding implementation details as much as possible (although
commentary is included on implementation-driven decisions) and should be read as the software-
visible interface to a wide variety of implementations rather than as the design of a particular hardware
artifact. The RISC-V manual is structured in two volumes. This volume covers the design of the base
unprivileged instructions, including optional unprivileged ISA extensions. Unprivileged instructions are
those that are generally usable in all privilege modes in all privileged architectures, though behavior
might vary depending on privilege mode and privilege architecture. The second volume provides the

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.1. RISC-V Hardware Platform Terminology | Page 11

design of the first ("classic") privileged architecture. The manuals use IEC 80000-13:2008
conventions, with a byte of 8 bits.

In the unprivileged ISA design, we tried to remove any dependence on particular
o microarchitectural features, such as cache line size, or on privileged architecture

details, such as page translation. This is both for simplicity and to allow maximum

flexibility for alternative microarchitectures or alternative privileged architectures.

1.1. RISC-V Hardware Platform Terminology

A RISC-V hardware platform can contain one or more RISC-V-compatible processing cores together
with other non-RISC-V-compatible cores, fixed-function accelerators, various physical memory
structures, I7/0 devices, and an interconnect structure to allow the components to communicate.

A component is termed a core if it contains an independent instruction fetch unit. A RISC-V-
compatible core might support multiple RISC-V-compatible hardware threads, or harts, through
multithreading.

A RISC-V core might have additional specialized instruction-set extensions or an added coprocessor.
We use the term coprocessor to refer to a unit that is attached to a RISC-V core and is mostly
sequenced by a RISC-V instruction stream, but which contains additional architectural state and
instruction-set extensions, and possibly some limited autonomy relative to the primary RISC-V
instruction stream.

We use the term accelerator to refer to either a non-programmable fixed-function unit or a core that
can operate autonomously but is specialized for certain tasks. In RISC-V systems, we expect many
programmable accelerators will be RISC-V-based cores with specialized instruction-set extensions
and/or customized coprocessors. An important class of RISC-V accelerators are I/0 accelerators,
which offload I/0 processing tasks from the main application cores.

The system-level organization of a RISC-V hardware platform can range from a single-core
microcontroller to a many-thousand-node cluster of shared-memory manycore server nodes. Even
small systems-on-a-chip might be structured as a hierarchy of multicomputers and/or multiprocessors
to modularize development effort or to provide secure isolation between subsystems.

1.2. RISC-V Software Execution Environments and Harts

The behavior of a RISC-V program depends on the execution environment in which it runs. A RISC-V
execution environment interface (EEI) defines the initial state of the program, the number and type of
harts in the environment including the privilege modes supported by the harts, the accessibility and
attributes of memory and I/0 regions, the behavior of all legal instructions executed on each hart (i.e.,
the ISA is one component of the EEI), and the handling of any interrupts or exceptions raised during
execution including environment calls. Examples of EEIs include the Linux application binary interface
(ABI), or the RISC-V supervisor binary interface (SBI). The implementation of a RISC-V execution
environment can be pure hardware, pure software, or a combination of hardware and software. For
example, opcode traps and software emulation can be used to implement functionality not provided in
hardware. Examples of execution environment implementations include:

® "Bare metal" hardware platforms where harts are directly implemented by physical processor
threads and instructions have full access to the physical address space. The hardware platform
defines an execution environment that begins at power-on reset.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.2. RISC-V Software Execution Environments and Harts | Page 12

® RISC-V operating systems that provide multiple user-level execution environments by multiplexing
user-level harts onto available physical processor threads and by controlling access to memory via
virtual memory.

® RISC-V hypervisors that provide multiple supervisor-level execution environments for guest
operating systems.

® RISC-V emulators, such as Spike, QEMU or rv8, which emulate RISC-V harts on an underlying x86
system, and which can provide either a user-level or a supervisor-level execution environment.

A bare hardware platform can be considered to define an EEI, where the accessible
harts, memory, and other devices populate the environment, and the initial state is
that at power-on reset. Generally, most software is designed to use a more abstract
interface to the hardware, as more abstract EEIs provide greater portability across
different hardware platforms. Often EEIs are layered on top of one another, where
one higher-level EEI uses another lower-level EEL

From the perspective of software running in a given execution environment, a hart is a resource that
autonomously fetches and executes RISC-V instructions within that execution environment. In this
respect, a hart behaves like a hardware thread resource even if time-multiplexed onto real hardware by
the execution environment. Some EEIs support the creation and destruction of additional harts, for
example, via environment calls to fork new harts.

The execution environment is responsible for ensuring the eventual forward progress of each of its
harts. For a given hart, that responsibility is suspended while the hart is exercising a mechanism that
explicitly waits for an event, such as the wait-for-interrupt instruction defined in Volume II of this
specification; and that responsibility ends if the hart is terminated. The following events constitute
forward progress:

® The retirement of an instruction.

® A trap, as defined in Section 1.6.

® Any other event defined by an extension to constitute forward progress.

The term hart was introduced in the work on Lithe (Pan et al., 2009) and (Pan et al.,
20170) to provide a term to represent an abstract execution resource as opposed to a
software thread programming abstraction.

The important distinction between a hardware thread (hart) and a software thread
context is that the software running inside an execution environment is not
responsible for causing progress of each of its harts; that is the responsibility of the
outer execution environment. So the environment’s harts operate like hardware
threads from the perspective of the software inside the execution environment.

An execution environment implementation might time-multiplex a set of guest harts
onto fewer host harts provided by its own execution environment but must do so in a
way that guest harts operate like independent hardware threads. In particular, if there
are more guest harts than host harts then the execution environment must be able to
preempt the guest harts and must not wait indefinitely for guest software on a guest
hart to "yield" control of the guest hart.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.3. RISC-V ISA Overview | Page 13

1.3. RISC-V ISA Overview

A RISC-V ISA is defined as a base integer ISA, which must be present in any implementation, plus
optional extensions to the base ISA. The base integer ISAs are very similar to that of the early RISC
processors except with no branch delay slots and with support for optional variable-length instruction
encodings. A base is carefully restricted to a minimal set of instructions sufficient to provide a
reasonable target for compilers, assemblers, linkers, and operating systems (with additional privileged
operations), and so provides a convenient ISA and software toolchain "skeleton" around which more
customized processor ISAs can be built.

Although it is convenient to speak of the RISC-V ISA, RISC-V is actually a family of related ISAs, of
which there are currently four base ISAs. Each base integer instruction set is characterized by the
width of the integer registers and the corresponding size of the address space and by the number of
integer registers. There are two primary base integer variants, RV32I and RV64I, described in Chapter
2 and Chapter 4, which provide 32-bit or 64-bit address spaces respectively. We use the term XLEN to
refer to the width of an integer register in bits (either 32 or 64). Chapter 3 describes the RV32E and
RV64E subset variants of the RV32I or RV64I base instruction sets respectively, which have been
added to support small microcontrollers, and which have half the number of integer registers. Chapter
5 sketches a future RV128I variant of the base integer instruction set supporting a flat 128-bit address
space (XLEN=128). The base integer instruction sets use a two’s-complement representation for
signed integer values.

Although 64-bit address spaces are a requirement for larger systems, we believe 32-
bit address spaces will remain adequate for many embedded and client devices for

0 decades to come and will be desirable to lower memory traffic and energy
consumption. In addition, 32-bit address spaces are sufficient for educational
purposes. A larger flat 128-bit address space might eventually be required, so we
ensured this could be accommodated within the RISC-V ISA framework.

The four base ISAs in RISC-V are treated as distinct base ISAs. A common question
is why is there not a single ISA, and in particular, why is RV32I not a strict subset of
RV64I? Some earlier ISA designs (SPARC, MIPS) adopted a strict superset policy
when increasing address space size to support running existing 32-bit binaries on
new 64-bit hardware.

The main advantage of explicitly separating base ISAs is that each base ISA can be
optimized for its needs without requiring to support all the operations needed for
other base ISAs. For example, RV64I can omit instructions and CSRs that are only
needed to cope with the narrower registers in RV32I. The RV32I variants can use
encoding space otherwise reserved for instructions only required by wider address-

o space variants.

The main disadvantage of not treating the design as a single ISA is that it
complicates the hardware needed to emulate one base ISA on another (e.g., RV32I
on RV641I). However, differences in addressing and illegal-instruction traps generally
mean some mode switch would be required in hardware in any case even with full
superset instruction encodings, and the different RISC-V base ISAs are similar
enough that supporting multiple versions is relatively low cost. Although some have
proposed that the strict superset design would allow legacy 32-bit libraries to be
linked with 64-bit code, this is impractical in practice, even with compatible
encodings, due to the differences in software calling conventions and system-call
interfaces.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.3. RISC-V ISA Overview | Page 14

The RISC-V privileged architecture provides fields in misa to control the unprivileged
ISA at each level to support emulating different base ISAs on the same hardware.
We note that newer SPARC and MIPS ISA revisions have deprecated support for
running 32-bit code unchanged on 64-bit systems.

A related question is why there is a different encoding for 32-bit adds in RV32I (ADD)
and RV64I (ADDW)? The ADDW opcode could be used for 32-bit adds in RV32I and
ADDD for 64-bit adds in RV641, instead of the existing design which uses the same
opcode ADD for 32-bit adds in RV32I and 64-bit adds in RV64I with a different
opcode ADDW for 32-bit adds in RV641I. This would also be more consistent with the
use of the same LW opcode for 32-bit load in both RV32I and RV64I. The very first
versions of RISC-V ISA did have a variant of this alternate design, but the RISC-V
design was changed to the current choice in January 2011. Our focus was on
supporting 32-bit integers in the 64-bit ISA not on providing compatibility with the
32-bit ISA, and the motivation was to remove the asymmetry that arose from having
not all opcodes in RV32I have a *W suffix (e.g., ADDW, but AND not ANDW). In
hindsight, this was perhaps not well-justified and a consequence of designing both
ISAs at the same time as opposed to adding one later to sit on top of another, and
also from a belief we had to fold platform requirements into the ISA spec which
would imply that all the RV32I instructions would have been required in RV641. It is
too late to change the encoding now, but this is also of little practical consequence
for the reasons stated above.

It has been noted we could enable the *W variants as an extension to RV32I systems
to provide a common encoding across RV641I and a future RV32 variant.

RISC-V has been designed to support extensive customization and specialization. Each base integer
ISA can be extended with one or more optional instruction-set extensions. An extension may be
categorized as either standard, custom, or non-conforming. For this purpose, we divide each RISC-V
instruction-set encoding space (and related encoding spaces such as the CSRs) into three disjoint
categories: standard, reserved, and custom. Standard extensions and encodings are defined by RISC-V
International; any extensions not defined by RISC-V International are non-standard. Each base ISA
and its standard extensions use only standard encodings, and shall not conflict with each other in their
uses of these encodings. Reserved encodings are currently not defined but are saved for future
standard extensions; once thus used, they become standard encodings. Custom encodings shall never
be used for standard extensions and are made available for vendor-specific non-standard extensions.
Non-standard extensions are either custom extensions, that use only custom encodings, or non-
conforming extensions, that use any standard or reserved encoding. Instruction-set extensions are
generally shared but may provide slightly different functionality depending on the base ISA. Chapter 37
describes various ways of extending the RISC-V ISA. We have also developed a naming convention for
RISC-V base instructions and instruction-set extensions, described in detail in Chapter 38.

To support more general software development, a set of standard extensions are defined to provide
integer multiply/divide, atomic operations, and single and double-precision floating-point arithmetic.
The base integer ISA is named "I" (prefixed by RV32 or RV64 depending on integer register width),
and contains integer computational instructions, integer loads, integer stores, and control-flow
instructions. The standard integer multiplication and division extension is named "M", and adds
instructions to multiply and divide values held in the integer registers. The standard atomic instruction
extension, denoted by "A", adds instructions that atomically read, modify, and write memory for inter-
processor synchronization. The standard single-precision floating-point extension, denoted by "F", adds
floating-point registers, single-precision computational instructions, and single-precision loads and
stores. The standard double-precision floating-point extension, denoted by "D", expands the floating-

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.4. Memory | Page 15

point registers, and adds double-precision computational instructions, loads, and stores. The standard
"C" compressed instruction extension provides narrower 16-bit forms of common instructions.

Beyond the base integer ISA and these standard extensions, we believe it is rare that a new instruction
will provide a significant benefit for all applications, although it may be very beneficial for a certain
domain. As energy efficiency concerns are forcing greater specialization, we believe it is important to
simplify the required portion of an ISA specification. Whereas other architectures usually treat their
ISA as a single entity, which changes to a new version as instructions are added over time, RISC-V will
endeavor to keep the base and each standard extension constant over time, and instead layer new
instructions as further optional extensions. For example, the base integer ISAs will continue as fully
supported standalone ISAs, regardless of any subsequent extensions.

1.4. Memory

A RISC-V hart has a single byte-addressable address space of 2XLEN pytes for all memory accesses. A
word of memory is defined as 32 bits (4 bytes). Correspondingly, a halfword is 16 bits (2 bytes), a
doubleword is 64 bits (8 bytes), and a quadword is 128 bits (16 bytes). The memory address space is
circular, so that the byte at address 2XLEN_ 1 is adjacent to the byte at address zero. Accordingly,

memory address computations done by the hardware ignore overflow and instead wrap around modulo
9XLEN,

The execution environment determines the mapping of hardware resources into a hart’'s address
space. Different address ranges of a hart’s address space may (1) contain main memory, or (2) contain
one or more I/0 devices. Reads and writes of I/0 devices may have visible side effects, but accesses
to main memory cannot. Vacant address ranges are not a separate category but can be represented as
either main memory or I/0 regions that are not accessible. Although it is possible for the execution
environment to call everything in a hart’s address space an I/0 device, it is usually expected that some
portion will be specified as main memory.

When a RISC-V platform has multiple harts, the address spaces of any two harts may be entirely the
same, or entirely different, or may be partly different but sharing some subset of resources, mapped
into the same or different address ranges.

For a purely "bare metal" environment, all harts may see an identical address space,

o accessed entirely by physical addresses. However, when the execution environment
includes an operating system employing address translation, it is common for each
hart to be given a virtual address space that is largely or entirely its own.

Executing each RISC-V machine instruction entails one or more memory accesses, subdivided into
implicit and explicit accesses. For each instruction executed, an implicit memory read (instruction
fetch) is done to obtain the encoded instruction to execute. Many RISC-V instructions perform no
further memory accesses beyond instruction fetch. Specific load and store instructions perform an
explicit read or write of memory at an address determined by the instruction. The execution
environment may dictate that instruction execution performs other implicit memory accesses (such as
to implement address translation) beyond those documented for the unprivileged ISA.

The execution environment determines what portions of the address space are accessible for each
kind of memory access. For example, the set of locations that can be implicitly read for instruction
fetch may or may not have any overlap with the set of locations that can be explicitly read by a load
instruction; and the set of locations that can be explicitly written by a store instruction may be only a

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.5. Base Instruction-Length Encoding | Page 16

subset of locations that can be read. Ordinarily, if an instruction attempts to access memory at an
inaccessible address, an exception is raised for the instruction.

Except when specified otherwise, implicit reads that do not raise an exception and that have no side
effects may occur arbitrarily early and speculatively, even before the machine could possibly prove that
the read will be needed. For instance, a valid implementation could attempt to read all of main memory
at the earliest opportunity, cache as many fetchable (executable) bytes as possible for later instruction
fetches, and avoid reading main memory for instruction fetches ever again. To ensure that certain
implicit reads are ordered only after writes to the same memory locations, software must execute
specific fence or cache-control instructions defined for this purpose (such as the FENCE.I instruction
defined in Chapter 6).

The memory accesses (implicit or explicit) made by a hart may appear to occur in a different order as
perceived by another hart or by any other agent that can access the same memory. This perceived
reordering of memory accesses is always constrained, however, by the applicable memory consistency
model. The default memory consistency model for RISC-V is the RISC-V Weak Memory Ordering
(RVWMO), defined in Chapter 18 and in appendices. Optionally, an implementation may adopt the
stronger model of Total Store Ordering, as defined in Chapter 19. The execution environment may also
add constraints that further limit the perceived reordering of memory accesses. Since the RVWMO
model is the weakest model allowed for any RISC-V implementation, software written for this model is
compatible with the actual memory consistency rules of all RISC-V implementations. As with implicit
reads, software must execute fence or cache-control instructions to ensure specific ordering of
memory accesses beyond the requirements of the assumed memory consistency model and execution
environment.

1.5. Base Instruction-Length Encoding

The base RISC-V ISA has fixed-length 32-bit instructions that must be naturally aligned on 32-bit
boundaries. However, the standard RISC-V encoding scheme is designed to support ISA extensions
with variable-length instructions, where each instruction can be any number of 16-bit instruction
parcels in length and parcels are naturally aligned on 16-bit boundaries. The standard compressed ISA
extension described in Chapter 28 reduces code size by providing compressed 16-bit instructions and
relaxes the alignment constraints to allow all instructions (16 bit and 32 bit) to be aligned on any 16-bit
boundary to improve code density.

We use the term IALIGN (measured in bits) to refer to the instruction-address alignment constraint
the implementation enforces. IALIGN is 32 bits in the base ISA, but some ISA extensions, including
the compressed ISA extension, relax IALIGN to 16 bits. IALIGN may not take on any value other than
16 or 32.

We use the term ILEN (measured in bits) to refer to the maximum instruction length supported by an
implementation, and which is always a multiple of IALIGN. For implementations supporting only a
base instruction set, ILEN is 32 bits. Implementations supporting longer instructions have larger
values of ILEN.

Table 1 illustrates the standard RISC-V instruction-length encoding convention. All the 32-bit
instructions in the base ISA have their lowest two bits set to 11. The optional compressed 16-bit
instruction-set extensions have their lowest two bits equal to 00, 81, or 16.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.5. Base Instruction-Length Encoding | Page 17

1.5.1. Expanded Instruction-Length Encoding

A portion of the 32-bit instruction-encoding space has been tentatively allocated for instructions
longer than 32 bits. The entirety of this space is reserved at this time, and the following proposal for
encoding instructions longer than 32 bits is not considered frozen.

Standard instruction-set extensions encoded with more than 32 bits have additional low-order bits set
to 1, with the conventions for 48-bit and 64-bit lengths shown in Table 1. Instruction lengths between
80 bits and 176 bits are encoded using a 3-bit field in bits [14:12] giving the number of 16-bit words in
addition to the first 5 x 16-bit words. The encoding with bits [14:12] set to "111" is reserved for future
longer instruction encodings.

Table 1. RISC-V instruction length encoding. Only the 16-bit and 32-bit encodings are considered frozen at
this time.

XXXXXXXXXXXXxxaa 16-bit (aa=11)

XOOXXXXXXXXXXXX XXXXXXXXXXXbbb11 32-bit (bbb=111)

C XXX XXXXXXXXXXXXXXXX XXXXXXXXXX 011111 48-bit

S XXX XOOOXXXXXXXXXXXXX XXOXXXXXXX0111111 64-bit

CXXXX XXX xnnnxxxxx1111111 (809+16*nnn)-bit, nnn=111

S XXXX T XOOKXXXXXXXXXXX X1 xxxxx1111111 Reserved for =192-bits
Byte Address: base+4 base+2 base

Given the code size and energy savings of a compressed format, we wanted to build
in support for a compressed format to the ISA encoding scheme rather than adding
this as an afterthought, but to allow simpler implementations we didn’t want to make
the compressed format mandatory. We also wanted to optionally allow longer
instructions to support experimentation and larger instruction-set extensions.
Although our encoding convention required a tighter encoding of the core RISC-V
ISA, this has several beneficial effects.

An implementation of the standard IMAFD ISA need only hold the most-significant
30 bits in instruction caches (a 6.25% saving). On instruction cache refills, any
instructions encountered with either low bit clear should be recoded into illegal 30-

o bit instructions before storing in the cache to preserve illegal-instruction exception
behavior.

Perhaps more importantly, by condensing our base ISA into a subset of the 32-bit
instruction word, we leave more space available for non-standard and custom
extensions. In particular, the base RV32I ISA uses less than 1/8 of the encoding
space in the 32-bit instruction word. As described in Chapter 37, an implementation
that does not require support for the standard compressed instruction extension can
map 3 additional non-conforming 30-bit instruction spaces into the 32-bit fixed-
width format, while preserving support for standard =32-bit instruction-set
extensions. Further, if the implementation also does not need instructions >32-bits in
length, it can recover a further four major opcodes for non-conforming extensions.

Encodings with bits [15:0] all zeros are defined as illegal instructions. These instructions are
considered to be of minimal length: 16 bits if any 16-bit instruction-set extension is present, otherwise
32 bits. The encoding with bits [ILEN-1:0] all ones is also illegal; this instruction is considered to be

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.5. Base Instruction-Length Encoding | Page 18
ILEN bits long.

We consider it a feature that any length of instruction containing all zero bits is not
legal, as this quickly traps erroneous jumps into zeroed memory regions. Similarly,
we also reserve the instruction encoding containing all ones to be an illegal
instruction, to catch the other common pattern observed with unprogrammed non-
volatile memory devices, disconnected memory buses, or broken memory devices.

Software can rely on a naturally aligned 32-bit word containing zero to act as an
illegal instruction on all RISC-V implementations, to be used by software where an
illegal instruction is explicitly desired. Defining a corresponding known illegal value

o for all ones is more difficult due to the variable-length encoding. Software cannot
generally use the illegal value of ILEN bits of all 1s, as software might not know ILEN
for the eventual target machine (e.g., if software is compiled into a standard binary
library used by many different machines). Defining a 32-bit word of all ones as illegal
was also considered, as all machines must support a 32-bit instruction size, but this
requires the instruction-fetch unit on machines with ILEN >32 report an illegal-
instruction exception rather than an access-fault exception when such an instruction
borders a protection boundary, complicating variable-instruction-length fetch and
decode.

RISC-V base ISAs have either little-endian or big-endian memory systems, with the privileged
architecture further defining bi-endian operation. Instructions are stored in memory as a sequence of
16-bit little-endian parcels, regardless of memory system endianness. Parcels forming one instruction
are stored at increasing halfword addresses, with the lowest-addressed parcel holding the lowest-
numbered bits in the instruction specification.

We originally chose little-endian byte ordering for the RISC-V memory system
because little-endian systems are currently dominant commercially (all x86 systems;
i0S, Android, and Windows for ARM). A minor point is that we have also found little-
endian memory systems to be more natural for hardware designers. However, certain
application areas, such as IP networking, operate on big-endian data structures, and
certain legacy code bases have been built assuming big-endian processors, so we
have defined big-endian and bi-endian variants of RISC-V.

We have to fix the order in which instruction parcels are stored in memory,

independent of memory system endianness, to ensure that the length-encoding bits

always appear first in halfword address order. This allows the length of a variable-

length instruction to be quickly determined by an instruction-fetch unit by examining
o only the first few bits of the first 16-bit instruction parcel.

We further make the instruction parcels themselves little-endian to decouple the
instruction encoding from the memory system endianness altogether. This design
benefits both software tooling and bi-endian hardware. Otherwise, for instance, a
RISC-V assembler or disassembler would always need to know the intended active
endianness, despite that in bi-endian systems, the endianness mode might change
dynamically during execution. In contrast, by giving instructions a fixed endianness, it
is sometimes possible for carefully written software to be endianness-agnostic even
in binary form, much like position-independent code.

The choice to have instructions be only little-endian does have consequences,
however, for RISC-V software that encodes or decodes machine instructions. Big-

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.6. Exceptions, Traps, and Interrupts | Page 19

endian JIT compilers, for example, must swap the byte order when storing to
instruction memory.

Once we had decided to fix on a little-endian instruction encoding, this naturally led
to placing the length-encoding bits in the LSB positions of the instruction format to
avoid breaking up opcode fields.

1.6. Exceptions, Traps, and Interrupts

We use the term exception to refer to an unusual condition occurring at run time associated with an
instruction in the current RISC-V hart. We use the term interrupt to refer to an external asynchronous
event that may cause a RISC-V hart to experience an unexpected transfer of control. We use the term
trap to refer to the transfer of control to a trap handler caused by either an exception or an interrupt.

The instruction descriptions in following chapters describe conditions that can raise an exception
during execution. The general behavior of most RISC-V EEIs is that a trap to some handler occurs
when an exception is signaled on an instruction (except for floating-point exceptions, which, in the
standard floating-point extensions, do not cause traps). The manner in which interrupts are generated,
routed to, and enabled by a hart depends on the EEI.

o Our use of "exception" and "trap" is compatible with that in the IEEE-754 floating-
point standard.

How traps are handled and made visible to software running on the hart depends on the enclosing
execution environment. From the perspective of software running inside an execution environment,
traps encountered by a hart at runtime can have four different effects:

Contained Trap

The trap is visible to, and handled by, software running inside the execution environment. For
example, in an EEI providing both supervisor and user mode on harts, an ECALL by a user-mode
hart will generally result in a transfer of control to a supervisor-mode handler running on the same
hart. Similarly, in the same environment, when a hart is interrupted, an interrupt handler will be run
in supervisor mode on the hart.

Requested Trap

The trap is a synchronous exception that is an explicit call to the execution environment requesting
an action on behalf of software inside the execution environment. An example is a system call. In
this case, execution may or may not resume on the hart after the requested action is taken by the
execution environment. For example, a system call could remove the hart or cause an orderly
termination of the entire execution environment.

Invisible Trap

The trap is handled transparently by the execution environment and execution resumes normally
after the trap is handled. Examples include emulating missing instructions, handling non-resident
page faults in a demand-paged virtual-memory system, or handling device interrupts for a different
job in a multiprogrammed machine. In these cases, the software running inside the execution
environment is not aware of the trap (we ignore timing effects in these definitions).

Fatal Trap

The trap represents a fatal failure and causes the execution environment to terminate execution.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

1.7. UNSPECIFIED Behaviors and Values | Page 20

Examples include failing a virtual-memory page-protection check or allowing a watchdog timer to
expire. Each EEI should define how execution is terminated and reported to an external
environment.

Table 2 shows the characteristics of each kind of trap.

Table 2. Characteristics of traps

Contained Requested Invisible Fatal

Execution terminates No No' No Yes
Software is oblivious No No Yes Yes?
Handled by environment No Yes Yes Yes

! Termination may be requested
2 Imprecise fatal traps might be observable by software

The EEI defines for each trap whether it is handled precisely, though the recommendation is to
maintain preciseness where possible. Contained and requested traps can be observed to be imprecise
by software inside the execution environment. Invisible traps, by definition, cannot be observed to be
precise or imprecise by software running inside the execution environment. Fatal traps can be
observed to be imprecise by software running inside the execution environment, if known-errorful
instructions do not cause immediate termination.

Because this document describes unprivileged instructions, traps are rarely mentioned. Architectural
means to handle contained traps are defined in the privileged architecture manual, along with other
features to support richer EEIs. Unprivileged instructions that are defined solely to cause requested
traps are documented here. Invisible traps are, by their nature, out of scope for this document.
Instruction encodings that are not defined here and not defined by some other means may cause a
fatal trap.

1.7. UNSPECIFIED Behaviors and Values

The architecture fully describes what implementations must do and any constraints on what they may
do. In cases where the architecture intentionally does not constrain implementations, the term
UNSPECIFIED is explicitly used.

The term UNSPECIFIED refers to a behavior or value that is intentionally unconstrained. The definition
of these behaviors or values is open to extensions, platform standards, or implementations. Extensions,
platform standards, or implementation documentation may provide normative content to further
constrain cases that the base architecture defines as UNSPECIFIED.

Like the base architecture, extensions should fully describe allowable behavior and values and use the
term UNSPECIFIED for cases that are intentionally unconstrained. These cases may be constrained or
defined by other extensions, platform standards, or implementations.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.1. Programmers' Model for Base Integer ISA | Page 21

Chapter 2. RV32I Base Integer Instruction Set, Version 2.1
This chapter describes the RV32I base integer instruction set.

RV32I was designed to be sufficient to form a compiler target and to support modern
operating system environments. The ISA was also designed to reduce the hardware
required in a minimal implementation. RV32I contains 40 unique instructions,
though a simple implementation might cover the ECALL/EBREAK instructions with a
single SYSTEM hardware instruction that always traps and might be able to
implement the FENCE instruction as a NOP, reducing base instruction count to 38
total. RV32I can emulate almost any other ISA extension (except the A extension,
o which requires additional hardware support for atomicity).

In practice, a hardware implementation including the machine-mode privileged
architecture will also require the 6 CSR instructions.

Subsets of the base integer ISA might be useful for pedagogical purposes, but the
base has been defined such that there should be little incentive to subset a real
hardware implementation beyond omitting support for misaligned memory accesses
and treating all SYSTEM instructions as a single trap.

0 The standard RISC-V assembly language syntax is documented in the Assembly
Programmer’s Manual (RISC-V Assembly Programmer’s Manual, n.d.).

o Most of the commentary for RV32I also applies to the RV641I base.

2.1. Programmers' Model for Base Integer ISA

Table 3 shows the unprivileged state for the base integer ISA. For RV32I, the 32 x registers are each
32 bits wide, i.e., XLEN=32. Register x6 is hardwired with all bits equal to 8. General purpose registers x1-
x31 hold values that various instructions interpret as a collection of Boolean values, or as two’s
complement signed binary integers or unsigned binary integers.

There is one additional unprivileged register: the program counter pc holds the address of the current
instruction.

Table 3. RISC-V base unprivileged integer register state.
XLEN-1 0
x0/zero
x1
x2
x3
x4
x5
X6
x7
x8

X9

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.1. Programmers' Model for Base Integer ISA | Page 22

XLEN-1 [
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
x27
x28
x29
x30
x31

pc

There is no dedicated stack pointer or subroutine return address link register in the
Base Integer ISA; the instruction encoding allows any x register to be used for these
purposes. However, the standard software calling convention uses register x1 to hold
the return address for a call, with register x5 available as an alternate link register.
The standard calling convention uses register x2 as the stack pointer.

Hardware might choose to accelerate function calls and returns that use x1 or x5. See
the descriptions of the JAL and JALR instructions.

The optional compressed 16-bit instruction format is designed around the
o assumption that x1 is the return address register and x2 is the stack pointer. Software
using other conventions will operate correctly but may have greater code size.

The number of available architectural registers can have large impacts on code size,
performance, and energy consumption. Although 16 registers would arguably be
sufficient for an integer ISA running compiled code, it is impossible to encode a
complete ISA with 16 registers in 16-bit instructions using a 3-address format.
Although a 2-address format would be possible, it would increase instruction count
and lower efficiency. We wanted to avoid intermediate instruction sizes (such as
Xtensa’s 24-bit instructions) to simplify base hardware implementations, and once a
32-bit instruction size was adopted, it was straightforward to support 32 integer

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.2. Base Instruction Formats | Page 23

registers. A larger number of integer registers also helps performance on high-
performance code, where there can be extensive use of loop unrolling, software
pipelining, and cache tiling.

For these reasons, we chose a conventional size of 32 integer registers for RV32I.
Dynamic register usage tends to be dominated by a few frequently accessed
registers, and regfile implementations can be optimized to reduce access energy for
the frequently accessed registers (Tseng & Asanovic, 2000). The optional
compressed 16-bit instruction format mostly only accesses 8 registers and hence can
provide a dense instruction encoding, while additional instruction-set extensions
could support a much larger register space (either flat or hierarchical) if desired.

For resource-constrained embedded applications, we have defined the RV32E subset,
which only has 16 registers (Chapter 3).

2.2. Base Instruction Formats

In the base RV32I ISA, there are four core instruction formats (R/1/S/U), as shown in Base instruction
formats. All are a fixed 32 bits in length. The base ISA has IALIGN=32, meaning that instructions must
be aligned on a four-byte boundary in memory. An instruction-address-misaligned exception is
generated on a taken branch or unconditional jump if the target address is not IALIGN-bit aligned. This
exception is reported on the branch or jump instruction, not on the target instruction. No instruction-
address-misaligned exception is generated for a conditional branch that is not taken.

The alignment constraint for base ISA instructions is relaxed to a two-byte boundary
when instruction extensions with 16-bit lengths or other odd multiples of 16-bit
lengths are added (i.e., IALIGN=16).

o Instruction-address-misaligned exceptions are reported on the branch or jump that
would cause instruction misalignment to help debugging, and to simplify hardware
design for systems with IALIGN=32, where these are the only places where
misalignment can occur.

The behavior upon decoding a reserved instruction is UNSPECIFIED.

Some platforms may require that opcodes reserved for standard use raise an illegal-
e instruction exception. Other platforms may permit reserved opcode space be used
for non-conforming extensions.

The RISC-V ISA keeps the source (rs7 and rs2) and destination (rd) registers at the same position in
all formats to simplify decoding. Except for the 5-bit immediates used in CSR instructions (Chapter 7),
immediates are always sign-extended, and are generally packed towards the leftmost available bits in
the instruction and have been allocated to reduce hardware complexity. In particular, the sign bit for all
immediates is always in bit 31 of the instruction to speed sign-extension circuitry.

31 25 24 20 19 15 14 12 1 7 6 o
funct7 rs2 rsi funct3 rd opcode R-Type

31 20 19 15 14 12 1 7 6)
imm[11:0] rsi funct3 rd opcode I-Type

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.3. Immediate Encoding Variants | Page 24

31 25 24 20 19 15 14 12 1 7 6
imm[11:5] rs2 rsi funct3 imm[4:0] opcode

31 12 1 7 6
imm([31:12] rd opcode

S-Type

U-Type

RISC-V base instruction formats. Each immediate subfield is labeled with the bit position (imm[x]) in
the immediate value being produced, rather than the bit position within the instruction’s immediate
field as is usually done.

Decoding register specifiers is usually on the critical paths in implementations, and
so the instruction format was chosen to keep all register specifiers at the same
position in all formats at the expense of having to move immediate bits across
formats (a property shared with RISC-IV aka. SPUR (Lee et al., 1989)).

In practice, most immediates are either small or require all XLEN bits. We chose an
asymmetric immediate split (12 bits in regular instructions plus a special load-upper-

immediate instruction with 20 bits) to increase the opcode space available for
regular instructions.

Immediates are sign-extended because we did not observe a benefit to using zero
extension for some immediates as in the MIPS ISA and wanted to keep the ISA as
simple as possible.

2.3. Immediate Encoding Variants

There are a further two variants of the instruction formats (B/J) based on the handling of immediates,
as shown in Base instruction formats immediate variants..

31 25 24 20 19 15 14 122 N1 7 6
funct7 rs2 rsi funct3 rd opcode

31 20 19 15 14 12 1 7 6
imm[11:0] rsi funct3 rd opcode

31 25 24 20 19 15 14 122 N1 7 6
imm[11:5] rs2 rsi funct3 imm[4:0] opcode

31 30 25 24 20 19 15 14 12 1 8 7 6
|[12]| imm[10:5] rs2 rsi | funct3 | imm[4:1] |[11] | opcode

31 12 N1 7 6
imm[31:12] rd opcode

31 30 21 20 19 12 1 7 6
|[2®]| imm[10:1] |[11]| imm[19:12] rd opcode

R-Type

I-Type

S-Type

B-Type

U-Type

J-Type

The only difference between the S and B formats is that the 12-bit immediate field is used to encode
branch offsets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign bit

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.4. Integer Computational Instructions | Page 25
stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B format.

Similarly, the only difference between the U and J formats is that the 20-bit immediate is shifted left
by 12 bits to form U immediates and by 1 bit to form J immediates. The location of instruction bits in
the U and J format immediates is chosen to maximize overlap with the other formats and with each
other.

Immediate types shows the immediates produced by each of the base instruction formats, and is
labeled to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 1 10 5 4 10

| — inst[31] — | inst[30:25] | inst[24:21] k2®]| I-immediate
31 1 10 5 4 1 0

| — inst[31] — | inst[30:25] | inst[11:8] | [7] | S-immediate
31 12 11 10 5 4 1 0

| — inst[31] — | [71 | inst[30:25] | inst[11:8] |] | B-immediate
31 30 20 19 12 1N)

|[31]| inst[30:20] | inst[19:12] | o | U-immediate
31 20 19 122 11 10 5 4 1 0

| — inst[31] — | inst[19:12] |[2®]| inst[30:25] inst[24:21] | o |J-immediate

Figure 1. Types of immediate produced by RISC-V instructions.

The fields are labeled with the instruction bits used to construct their value. Sign extensions always
uses inst[31].

Sign extension is one of the most critical operations on immediates (particularly for
XLEN>32), and in RISC-V the sign bit for all immediates is always held in bit 31 of
the instruction to allow sign extension to proceed in parallel with instruction
decoding.

Although more complex implementations might have separate adders for branch and
Jjump calculations and so would not benefit from keeping the location of immediate

e bits constant across types of instruction, we wanted to reduce the hardware cost of
the simplest implementations. By rotating bits in the instruction encoding of B and J
immediates instead of using dynamic hardware muxes to multiply the immediate by
2, we reduce instruction signal fanout and immediate mux costs by around a factor of
2. The scrambled immediate encoding will add negligible time to static or ahead-of-
time compilation. For dynamic generation of instructions, there is some small
additional overhead, but the most common short forward branches have
straightforward immediate encodings.

2.4. Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in the integer register file.
Integer computational instructions are either encoded as register-immediate operations using the I-
type format or as register-register operations using the R-type format. The destination is register rd for
both register-immediate and register-register instructions. No integer computational instructions
cause arithmetic exceptions.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.4. Integer Computational Instructions | Page 26

We did not include special instruction-set support for overflow checks on integer
arithmetic operations in the base instruction set, as many overflow checks can be
cheaply implemented using RISC-V branches. Overflow checking for unsigned
addition requires only a single additional branch instruction after the addition: add t0,

tl1l, t2; bltu t0, t1, overflow.

For signed addition, if one operand’s sign is known, overflow checking requires only a
single branch after the addition: addi t8, t1, +imm; blt t@, t1, overflow. This covers

the common case of addition with an immediate operand.

e For general signed addition, three additional instructions after the addition are

required, leveraging the observation that the sum should be less than one of the

operands if and only if the other operand is negative.

add tO, t1, t2
slti t3, t2, 0

slt t4, tO, ti

bne t3, t4, overflow

In RV641, checks of 32-bit signed additions can be optimized further by comparing

the results of ADD and ADDW on the operands.

2.4.1. Integer Register-Immediate Instructions

31 20 19 15 14 12 11
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
I-immediate[11:0] src ADDI/SLTI[U] dest OP-IMM
I-immediate[11:0] src ANDI/ORI/XORI dest OP-IMM

ADDI adds the sign-extended 12-bit immediate to register rs1. Arithmetic overflow is ignored and the
result is simply the low XLEN bits of the result. ADDI rd, rs7, ® is used to implement the MV rd, rs1

assembler pseudoinstruction.

SLTI (set less than immediate) places the value 1 in register rd if register rs7 is less than the sign-
extended immediate when both are treated as signed numbers, else O is written to rd. SLTIU is similar
but compares the values as unsigned numbers (i.e., the immediate is first sign-extended to XLEN bits
then treated as an unsigned number). Note, SLTIU rd, rs1, 1 sets rd to 1 if rs7 equals zero, otherwise

sets rd to ® (assembler pseudoinstruction SEQZ rd, rs).

ANDI, ORI, XORI are logical operations that perform bitwise AND, OR, and XOR on register rs7 and the
sign-extended 12-bit immediate and place the result in rd. Note, XORI rd, rs7, -1 performs a bitwise

logical inversion of register rs7 (assembler pseudoinstruction NOT rd, rs).

31 25 24 20 19 15 14 12 1M
imm[11:5] imm[4:0] rsi funct3 rd opcode
7 5 5 3 5 7
O 0 0 0 0 0 O shamt[4:0] src SLLI dest OP-IMM
O 0 © 0 O 0 © shamt[4:0] src SRLI dest OP-IMM
O 1.0 0 0 0 O shamt[4:0] src SRAI dest OP-IMM

Shifts by a constant are encoded as a specialization of the I-type format. The operand to be shifted is
in rs1, and the shift amount is encoded in the lower 5 bits of the I-immediate field. The right shift type

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.4. Integer Computational Instructions | Page 27

is encoded in bit 30. SLLI is a logical left shift (zeros are shifted into the lower bits); SRLI is a logical
right shift (zeros are shifted into the upper bits); and SRAI is an arithmetic right shift (the original sign
bit is copied into the vacated upper bits).

31 12 1 7 6]
imm[31:12] rd opcode
20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI places
the 32-bit U-immediate value into the destination register rd, filling in the lowest 12 bits with zeros.

AUIPC (add upper immediate to pc) is used to build pc-relative addresses and uses the U-type format.
AUIPC forms a 32-bit offset from the U-immediate, filling in the lowest 12 bits with zeros, adds this
offset to the address of the AUIPC instruction, then places the result in register rd.

The assembly syntax for 1vi and auipc does not represent the lower 12 bits of the U-
immediate, which are always zero.

The AUIPC instruction supports two-instruction sequences to access arbitrary offsets
from the PC for both control-flow transfers and data accesses. The combination of an
AUIPC and the 12-bit immediate in a JALR can transfer control to any 32-bit PC-

o relative address, while an AUIPC plus the 12-bit immediate offset in regular load or
store instructions can access any 32-bit PC-relative data address.

The current PC can be obtained by setting the U-immediate to 0. Although a JAL +4
instruction could also be used to obtain the local PC (of the instruction following the
JAL), it might cause pipeline breaks in simpler microarchitectures or pollute BTB
structures in more complex microarchitectures.

2.4.2. Integer Register-Register Operations

RV32I defines several arithmetic R-type operations. All operations read the rs7 and rs2 registers as
source operands and write the result into register rd. The funct7 and funct3 fields select the type of
operation.

31 25 24 20 19 15 14 12 1 7 6]
funct7 rs2 rsi funct3 rd opcode
7 5 5 3 5 7
O © 0 0 0 0 ©® src2 srci ADD/SLT[U] dest OP
O 0 0 0 0 0 O src2 srci AND/OR/XOR dest OoP
O 0 0 0 0 0 O src2 srcl SLL/SRL dest OP
O 1.0 0 0 0 0 src2 srcl SUB/SRA dest OP

ADD performs the addition of rs7 and rs2. SUB performs the subtraction of rs2 from rs1. Overflows are
ignored and the low XLEN bits of results are written to the destination rd. SLT and SLTU perform
signed and unsigned compares respectively, writing 1 to rd if rs7 < rs2, © otherwise. Note, SLTU rd, x0,
rs2 sets rd to 1if rs2 is not equal to zero, otherwise sets rd to zero (assembler pseudoinstruction SNEZ
rd, rs). AND, OR, and XOR perform bitwise logical operations.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in register
rs1 by the shift amount held in the lower 5 bits of register rs2.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.5. Control Transfer Instructions | Page 28

2.4.3. NOP Instruction

31 20 19 15 14 12 1 7 6 o
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
0] ADDI 0 OP-IMM

The NOP instruction does not change any architecturally visible state, except for advancing the pc and
incrementing any applicable performance counters. NOP is encoded as ADDI x0, x0, O.

NOPs can be used to align code segments to microarchitecturally significant address
boundaries, or to leave space for inline code modifications. Although there are many
possible ways to encode a NOP, we define a canonical NOP encoding to allow
microarchitectural optimizations as well as for more readable disassembly output.
The other NOP encodings are made available for HINT Instructions.

o ADDI was chosen for the NOP encoding as this is most likely to take fewest
resources to execute across a range of systems (if not optimized away in decode). In
particular, the instruction only reads one register. Also, an ADDI functional unit is
more likely to be available in a superscalar design as adds are the most common
operation. In particular, address-generation functional units can execute ADDI using
the same hardware needed for base+offset address calculations, while register-
register ADD or logical/shift operations require additional hardware.

2.5. Control Transfer Instructions

RV32I provides two types of control transfer instructions: unconditional jumps and conditional
branches. Control transfer instructions in RV32I do not have architecturally visible delay slots.

If an instruction access-fault or instruction page-fault exception occurs on the target of a jump or
taken branch, the exception is reported on the target instruction, not on the jump or branch instruction.

2.5.1. Unconditional Jumps

The jump and link (JAL) instruction uses the J-type format, where the J-immediate encodes a signed
offset in multiples of 2 bytes. The offset is sign-extended and added to the address of the jump
instruction to form the jump target address. Jumps can therefore target a 1 MiB range. JAL stores the
address of the instruction following the jump (‘pc'+4) into register rd. The standard software calling
convention uses 'x1' as the return address register and 'x5' as an alternate link register.

The alternate link register supports calling millicode routines (e.g., those to save and
restore registers in compressed code) while preserving the regular return address

e register. The register x5 was chosen as the alternate link register as it maps to a
temporary in the standard calling convention, and has an encoding that is only one
bit different than the regular link register.

Plain unconditional jumps (assembler pseudoinstruction J) are encoded as a JAL with rd=xo.

31 30 21 20 19 12 1 7 6 0
|[2®]| imm[10:1] |[11] | imm[19:12] | rd opcode
1 10 1 8 5 7
offset[20:1] dest JAL

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.5. Control Transfer Instructions | Page 29

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target
address is obtained by adding the sign-extended 12-bit I-immediate to the register rs7, then setting
the least-significant bit of the result to zero. The address of the instruction following the jump (pc+4) is
written to register rd. Register xo can be used as the destination if the result is not required.

Plain unconditional indirect jumps (assembler pseudoinstruction JR) are encoded as a JALR with rd=
x0. Procedure returns in the standard calling convention (assembler pseudoinstruction RET) are
encoded as a JALR with rd=xe, rs71=x1, and imm=0.

31 20 19 15 14 12 1 7 6]
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
offset[11:0] base] dest JALR

The unconditional jump instructions all use PC-relative addressing to help support
position-independent code. The JALR instruction was defined to enable a two-
instruction sequence to jump anywhere in a 32-bit absolute address range. A LUI
instruction can first load rs1 with the upper 20 bits of a target address, then JALR
can add in the lower bits. Similarly, AUIPC then JALR can jump anywhere in a 32-bit
pc-relative address range.

Note that the JALR instruction does not treat the 12-bit immediate as multiples of 2

bytes, unlike the conditional branch instructions. This avoids one more immediate

format in hardware. In practice, most uses of JALR will have either a zero immediate
o or be paired with a LUI or AUIPC, so the slight reduction in range is not significant.

Clearing the least-significant bit when calculating the JALR target address both
simplifies the hardware slightly and allows the low bit of function pointers to be used
to store auxiliary information. Although there is potentially a slight loss of error
checking in this case, in practice jumps to an incorrect instruction address will
usually quickly raise an exception.

When used with a base rs1=x6, JALR can be used to implement a single instruction
subroutine call to the lowest or highest address region from anywhere in the address
space, which could be used to implement fast calls to a small runtime library.
Alternatively, an ABI could dedicate a general-purpose register to point to a library
elsewhere in the address space.

The JAL and JALR instructions will generate an instruction-address-misaligned exception if the target
address is not aligned to a four-byte boundary.

Instruction-address-misaligned exceptions are not possible on machines that
support extensions with 16-bit aligned instructions, such as the compressed
instruction-set extension, C.

Return-address prediction stacks are a common feature of high-performance instruction-fetch units,
but require accurate detection of instructions used for procedure calls and returns to be effective. For
RISC-V, hints as to the instructions' usage are encoded implicitly via the register numbers used. A JAL
instruction should push the return address onto a return-address stack (RAS) only when rd is 'x1' or x5.
JALR instructions should push/pop a RAS as shown in Table 4.

Table 4. Return-address stack prediction hints encoded in the register operands of a JALR instruction.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.5. Control Transfer Instructions | Page 30

rd is x1/x5 rs1is x1/x5 rd=rs1 RAS action

No No - None

No Yes — Pop
Yes No - Push
Yes Yes No Pop, then push
Yes Yes Yes Push

Some other ISAs added explicit hint bits to their indirect-jump instructions to guide
return-address stack manipulation. We use implicit hinting tied to register numbers
and the calling convention to reduce the encoding space used for these hints.

o When two different link registers (x1 and x5) are given as rs1 and rd, then the RAS is
both popped and pushed to support coroutines. If rs1 and rd are the same link
register (either x1 or x5), the RAS is only pushed to enable macro-op fusion of the

sequences: lui ra, imm20; jalr ra, imml2(ra)_ and _auipc ra, imm20; jalr ra,
imm12(ra)

2.5.2. Conditional Branches

All branch instructions use the B-type instruction format. The 12-bit B-immediate encodes signed
offsets in multiples of 2 bytes. The offset is sign-extended and added to the address of the branch
instruction to give the target address. The conditional branch range is +4 KiB.

31 25 24 20 19 15 14 12 1 7 6 N
imm[12]18:5] | rs2 | rs1 | funct3 | imm[4:1[11] | opcode
7 5 5 3 5 7
offset[12[10:5] src2 srcl BEQ/BNE offset[4:1]11] BRANCH
offset[12[10:5] src2 srcl BLT[U] offset[4:1]11] BRANCH
offset[12[10:5] src2 srcl BGE[U] offset[4:1]11] BRANCH

Branch instructions compare two registers. BEQ and BNE take the branch if registers rs7 and rs2 are
equal or unequal respectively. BLT and BLTU take the branch if rs7 is less than rs2, using signed and
unsigned comparison respectively. BGE and BGEU take the branch if rs7 is greater than or equal to rs2,
using signed and unsigned comparison respectively. Note, BGT, BGTU, BLE, and BLEU can be
synthesized by reversing the operands to BLT, BLTU, BGE, and BGEU, respectively.

0 Signed array bounds may be checked with a single BLTU instruction, since any
negative index will compare greater than any nonnegative bound.

Software should be optimized such that the sequential code path is the most common path, with less-
frequently taken code paths placed out of line. Software should also assume that backward branches
will be predicted taken and forward branches as not taken, at least the first time they are encountered.
Dynamic predictors should quickly learn any predictable branch behavior.

Unlike some other architectures, the RISC-V jump (JAL with rd=xe) instruction should always be used
for unconditional branches instead of a conditional branch instruction with an always-true condition.
RISC-V jumps are also PC-relative and support a much wider offset range than branches, and will not
pollute conditional-branch prediction tables.

The conditional branches were designed to include arithmetic comparison operations
o between two registers (as also done in PA-RISC, Xtensa, and MIPS R6), rather than
use condition codes (x86, ARM, SPARC, PowerPC), or to only compare one register

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.6. Load and Store Instructions | Page 31

against zero (Alpha, MIPS), or two registers only for equality (MIPS). This design was
motivated by the observation that a combined compare-and-branch instruction fits
into a regular pipeline, avoids additional condition code state or use of a temporary
register, and reduces static code size and dynamic instruction fetch traffic. Another
point is that comparisons against zero require non-trivial circuit delay (especially
after the move to static logic in advanced processes) and so are almost as expensive
as arithmetic magnitude compares. Another advantage of a fused compare-and-
branch instruction is that branches are observed earlier in the front-end instruction
stream, and so can be predicted earlier. There is perhaps an advantage to a design
with condition codes in the case where multiple branches can be taken based on the
same condition codes, but we believe this case to be relatively rare.

We considered but did not include static branch hints in the instruction encoding.
These can reduce the pressure on dynamic predictors, but require more instruction
encoding space and software profiling for best results, and can result in poor
performance if production runs do not match profiling runs.

We considered but did not include conditional moves or predicated instructions,
which can effectively replace unpredictable short forward branches. Conditional
moves are the simpler of the two, but are difficult to use with conditional code that
might cause exceptions (memory accesses and floating-point operations).
Predication adds additional flag state to a system, additional instructions to set and
clear flags, and additional encoding overhead on every instruction. Both conditional
move and predicated instructions add complexity to out-of-order microarchitectures,
adding an implicit third source operand due to the need to copy the original value of
the destination architectural register into the renamed destination physical register if
the predicate is false. Also, static compile-time decisions to use predication instead
of branches can result in lower performance on inputs not included in the compiler
training set, especially given that unpredictable branches are rare, and becoming
rarer as branch prediction techniques improve.

We note that various microarchitectural techniques exist to dynamically convert
unpredictable short forward branches into internally predicated code to avoid the
cost of flushing pipelines on a branch mispredict (Heil & Smith, 1996), (Klauser et al.,
1998), (Kim et al, 2005) and have been implemented in commercial processors
(Sinharoy et al, 2011). The simplest techniques just reduce the penalty of recovering
from a mispredicted short forward branch by only flushing instructions in the branch
shadow instead of the entire fetch pipeline, or by fetching instructions from both
sides using wide instruction fetch or idle instruction fetch slots. More complex
techniques for out-of-order cores add internal predicates on instructions in the
branch shadow, with the internal predicate value written by the branch instruction,
allowing the branch and following instructions to be executed speculatively and out-
of-order with respect to other code.

The conditional branch instructions will generate an instruction-address-misaligned exception if the
target address is not aligned to a four-byte boundary and the branch condition evaluates to true. If the
branch condition evaluates to false, the instruction-address-misaligned exception will not be raised.

Instruction-address-misaligned exceptions are not possible on machines that
o support extensions with 16-bit aligned instructions, such as the compressed
instruction-set extension, C.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.6. Load and Store Instructions | Page 32

2.6. Load and Store Instructions

RV32I is a load-store architecture, where only load and store instructions access memory and
arithmetic instructions only operate on CPU registers. RV32I provides a 32-bit address space that is
byte-addressed. The EEI will define what portions of the address space are legal to access with which
instructions (e.g., some addresses might be read only, or support word access only). Loads with a
destination of x@ must still raise any exceptions and cause any other side effects even though the load
value is discarded.

The EEI will define whether the memory system is little-endian or big-endian. In RISC-V, endianness is
byte-address invariant.

In a system for which endianness is byte-address invariant, the following property
holds: if a byte is stored to memory at some address in some endianness, then a
byte-sized load from that address in any endianness returns the stored value.

In a little-endian configuration, multibyte stores write the least-significant register
byte at the lowest memory byte address, followed by the other register bytes in

o ascending order of their significance. Loads similarly transfer the contents of the
lesser memory byte addresses to the less-significant register bytes.

In a big-endian configuration, multibyte stores write the most-significant register
byte at the lowest memory byte address, followed by the other register bytes in
descending order of their significance. Loads similarly transfer the contents of the
greater memory byte addresses to the less-significant register bytes.

31 20 19 15 14 12 1 7 6 o
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
offset[11:0] base width dest LOAD
31 25 24 20 19 15 14 12 1 7 6]
imm[11:5] rs2 rsi funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

Load and store instructions transfer a value between the registers and memory. Loads are encoded in
the I-type format and stores are S-type. The effective address is obtained by adding register rs7 to the
sign-extended 12-bit offset. Loads copy a value from memory to register rd. Stores copy the value in
register rs2 to memory.

The LW instruction loads a 32-bit value from memory into rd. LH loads a 16-bit value from memory,
then sign-extends to 32-bits before storing in rd. LHU loads a 16-bit value from memory but then zero
extends to 32-bits before storing in rd. LB and LBU are defined analogously for 8-bit values. The SW,
SH, and SB instructions store 32-bit, 16-bit, and 8-bit values from the low bits of register rs2 to
memory.

Regardless of EEI, loads and stores whose effective addresses are naturally aligned shall not raise an
address-misaligned exception. Loads and stores whose effective address is not naturally aligned to the
referenced datatype (i.e., the effective address is not divisible by the size of the access in bytes) have
behavior dependent on the EEI.

An EEI may guarantee that misaligned loads and stores are fully supported, and so the software
running inside the execution environment will never experience a contained or fatal address-

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.7. Memory Ordering Instructions | Page 33

misaligned trap. In this case, the misaligned loads and stores can be handled in hardware, or via an
invisible trap into the execution environment implementation, or possibly a combination of hardware
and invisible trap depending on address.

An EEI may not guarantee misaligned loads and stores are handled invisibly. In this case, loads and
stores that are not naturally aligned may either complete execution successfully or raise an exception.
The exception raised can be either an address-misaligned exception or an access-fault exception. For
a memory access that would otherwise be able to complete except for the misalignment, an access-
fault exception can be raised instead of an address-misaligned exception if the misaligned access
should not be emulated, e.g., if accesses to the memory region have side effects. When an EEI does
not guarantee misaligned loads and stores are handled invisibly, the EEI must define if exceptions
caused by address misalignment result in a contained trap (allowing software running inside the
execution environment to handle the trap) or a fatal trap (terminating execution).

Misaligned accesses are occasionally required when porting legacy code, and help
performance on applications when using any form of packed-SIMD extension or
handling externally packed data structures. Our rationale for allowing EEIs to choose
to support misaligned accesses via the regular load and store instructions is to
simplify the addition of misaligned hardware support. One option would have been to
disallow misaligned accesses in the base ISAs and then provide some separate ISA
support for misaligned accesses, either special instructions to help software handle
misaligned accesses or a new hardware addressing mode for misaligned accesses.

0 Special instructions are difficult to use, complicate the ISA, and often add new
processor state (e.g., SPARC VIS align address offset register) or complicate access
to existing processor state (e.qg., MIPS LWL/LWR partial register writes). In addition,
for loop-oriented packed-SIMD code, the extra overhead when operands are
misaligned motivates software to provide multiple forms of loop depending on
operand alignment, which complicates code generation and adds to loop startup
overhead. New misaligned hardware addressing modes take considerable space in
the instruction encoding or require very simplified addressing modes (e.g., register
indirect only).

Even when misaligned loads and stores complete successfully, these accesses might run extremely
slowly depending on the implementation (e.g., when implemented via an invisible trap). Furthermore,
whereas naturally aligned loads and stores are guaranteed to execute atomically, misaligned loads and
stores might not, and hence require additional synchronization to ensure atomicity.

We do not mandate atomicity for misaligned accesses so execution environment
implementations can use an invisible machine trap and a software handler to handle

o some or all misaligned accesses. If hardware misaligned support is provided,
software can exploit this by simply using regular load and store instructions.
Hardware can then automatically optimize accesses depending on whether runtime
addresses are aligned.

2.7. Memory Ordering Instructions

31 28 27 26 25 24 23 22 21 20 19 15 14 12 11 7 6 0
fm Pl |PO|PR |PW| Sl [SO|SR [SW rsl funct3 rd opcode
4 11111111 5 3 5 7
FM 0 FENCE 0 MISC-MEM

The FENCE instruction is used to order device I/0 and memory accesses as viewed by other RISC-V

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.7. Memory Ordering Instructions | Page 34

harts and external devices or coprocessors. Any combination of device input (I), device output (O),
memory reads (R), and memory writes (W) may be ordered with respect to any combination of the
same. Informally, no other RISC-V hart or external device can observe any operation in the successor
set following a FENCE before any operation in the predecessor set preceding the FENCE. Chapter 18
provides a precise description of the RISC-V memory consistency model.

The FENCE instruction also orders memory reads and writes made by the hart as observed by memory
reads and writes made by an external device. However, FENCE does not order observations of events
made by an external device using any other signaling mechanism.

A device might observe an access to a memory location via some external
communication mechanism, e.g., a memory-mapped control register that drives an
interrupt signal to an interrupt controller. This communication is outside the scope of
o the FENCE ordering mechanism and hence the FENCE instruction can provide no
guarantee on when a change in the interrupt signal is visible to the interrupt
controller. Specific devices might provide additional ordering guarantees to reduce
software overhead but those are outside the scope of the RISC-V memory model.

The EEI will define what I/0 operations are possible, and in particular, which memory addresses when
accessed by load and store instructions will be treated and ordered as device input and device output
operations respectively rather than memory reads and writes. For example, memory-mapped I/0
devices will typically be accessed with uncached loads and stores that are ordered using the I and O
bits rather than the R and W bits. Instruction-set extensions might also describe new I/0 instructions
that will also be ordered using the I and O bits in a FENCE.

Table 5. Fence mode encoding

fm field Mnemonic Meaning
0000 none Normal Fence
1000 TSO With FENCE RW,RW: exclude write-to-read ordering; otherwise:

Reserved for future use.

other Reserved for future use.

The fence mode field fm defines the semantics of the FENCE. A FENCE with fm=6006 orders all memory
operations in its predecessor set before all memory operations in its successor set.

The FENCE.TSO instruction is encoded as a FENCE instruction with fm=1eee, predecessor=rw, and
successor=RW. FENCE.TS0 orders all load operations in its predecessor set before all memory operations
in its successor set, and all store operations in its predecessor set before all store operations in its
successor set. This leaves non-AM0 store operations in the FENCE.TS0’s predecessor set unordered with
non-AM0 loads in its successor set.

Because FENCE RW,RW imposes a superset of the orderings that FENCE.TSO
0 imposes, it is correct to ignore the fm field and implement FENCE.TSO as FENCE
RW,RW.

The unused fields in the FENCE instructions--rs7 and rd--are reserved for finer-grain fences in future
extensions. For forward compatibility, base implementations shall ignore these fields, and standard
software shall zero these fields. Likewise, many fm and predecessor/successor set settings in Table 5
are also reserved for future use. Base implementations shall treat all such reserved configurations as
normal fences with fm=0000, and standard software shall use only non-reserved configurations.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.8. Environment Call and Breakpoints | Page 35

We chose a relaxed memory model to allow high performance from simple machine
implementations and from likely future coprocessor or accelerator extensions. We
separate out I/0O ordering from memory R/W ordering to avoid unnecessary

0 serialization within a device-driver hart and also to support alternative non-memory
paths to control added coprocessors or I/0 devices. Simple implementations may
additionally ignore the predecessor and successor fields and always execute a
conservative fence on all operations.

2.8. Environment Call and Breakpoints

SYSTEM instructions are used to access system functionality that might require privileged access and
are encoded using the I-type instruction format. These can be divided into two main classes: those
that atomically read-modify-write control and status registers (CSRs), and all other potentially
privileged instructions. CSR instructions are described in Chapter 7, and the base unprivileged
instructions are described in the following section.

The SYSTEM instructions are defined to allow simpler implementations to always
o trap to a single software trap handler. More sophisticated implementations might
execute more of each system instruction in hardware.

31 20 19 15 14 12 11 7 6]
funci12 rsi funct3 rd opcode
12 5 3 5 7
ECALL 0 PRIV o SYSTEM
EBREAK 0 PRIV o SYSTEM

These two instructions cause a precise requested trap to the supporting execution environment.

The ECALL instruction is used to make a service request to the execution environment. The EEI will
define how parameters for the service request are passed, but usually these will be in defined locations
in the integer register file.

The EBREAK instruction is used to return control to a debugging environment.

ECALL and EBREAK were previously named SCALL and SBREAK. The instructions
e have the same functionality and encoding, but were renamed to reflect that they can
be used more generally than to call a supervisor-level operating system or debugger.

EBREAK was primarily designed to be used by a debugger to cause execution to stop
and fall back into the debugger. EBREAK is also used by the standard gcc compiler to
mark code paths that should not be executed.

Another use of EBREAK is to support "semihosting", where the execution
environment includes a debugger that can provide services over an alternate system
call interface built around the EBREAK instruction. Because the RISC-V base ISAs do

0 not provide more than one EBREAK instruction, RISC-V semihosting uses a special
sequence of instructions to distinguish a semihosting EBREAK from a debugger
inserted EBREAK.

slli x8, x0, 0x1f # Entry NOP
ebreak # Break to debugger
srai x0, x0, 7 # Exit NOP

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.9. HINT Instructions | Page 36

Note that these three instructions must be 32-bit-wide instructions, i.e., they mustn’t
be among the compressed 16-bit instructions described in Chapter 28.

The shift NOP instructions are still considered available for use as HINTs.

Semihosting is a form of service call and would be more naturally encoded as an
ECALL using an existing ABI, but this would require the debugger to be able to
intercept ECALLs, which is a newer addition to the debug standard. We intend to
move over to using ECALLs with a standard ABI, in which case, semihosting can
share a service ABI with an existing standard.

We note that ARM processors have also moved to using SVC instead of BKPT for
semihosting calls in newer designs.

2.9. HINT Instructions

RV32I reserves a large encoding space for HINT instructions, which are usually used to communicate
performance hints to the microarchitecture. Like the NOP instruction, HINTs do not change any
architecturally visible state, except for advancing the pc and any applicable performance counters.
Implementations are always allowed to ignore the encoded hints.

Most RV32I HINTs are encoded as integer computational instructions with rd=xe. The other RV32I
HINTs are encoded as FENCE instructions with a null predecessor or successor set and with fm=0.

These HINT encodings have been chosen so that simple implementations can ignore
HINTs altogether, and instead execute a HINT as a reqular instruction that happens
not to mutate the architectural state. For example, ADD is a HINT if the destination
register is xe; the five-bit rs1 and rs2 fields encode arguments to the HINT. However,
a simple implementation can simply execute the HINT as an ADD of rs1 and rs2 that
writes x0, which has no architecturally visible effect.

o As another example, a FENCE instruction with a zero pred field and a zero fm field is
a HINT; the succ, rs1, and rd fields encode the arguments to the HINT. A simple
implementation can simply execute the HINT as a FENCE that orders the null set of
prior memory accesses before whichever subsequent memory accesses are encoded
in the succ field. Since the intersection of the predecessor and successor sets is null,
the instruction imposes no memory orderings, and so it has no architecturally visible
effect.

Table 6 lists all RV32I HINT code points. 91% of the HINT space is reserved for standard HINTs. The
remainder of the HINT space is designated for custom HINTs: no standard HINTs will ever be defined
in this subspace.

We anticipate standard hints to eventually include memory-system spatial and
e temporal locality hints, branch prediction hints, thread-scheduling hints, security
tags, and instrumentation flags for simulation/emulation.

Table 6. RV32I HINT instructions.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.9. HINT Instructions | Page 37

Instruction Constraints Code Points Purpose
LUI rd=x0 220
AUIPC rd=x0 220
ADDI rd=x0, and either rs1#x0 or 217 _q
imm=0
ANDI ra=x0 917 Designated for future
standard use
ORI rd=x0 217
XORI rd=x0 217
ADD rd=x0, rs1#x0 210 _ 39
ADD rd=x0, rs1=x0, rs2#x2-x5 28
ADD rd=xe, rs1=x0, rs2=x2-x5 4 (rs2=x2) NTL.P1
(rs2=x3) NTL.PALL
(rs2=x4) NTL.S1
(rs2=x5) NTL.ALL
SLLI rd=x0, rs1=x0, shamt=31 1 Semihosting entry marker
SRAI rd=x0, rs1=x0, shamt=7 1 Semihosting exit marker
SuUB rd=x0 210
AND rd=x0 210
OR rd=x0 210
XOR rd=x0 210
SLL rd=x0 910
SRL rd=x0 210
SRA rd=x0 210 Designated for future
standard use
FENCE rd=x0, rs1#x0, fm=0, and 210 _g3
either pred=0 or succ=0
FENCE rd=x0, rs1=x0, fm=0, and 210 _63
either pred=0 or succ=0
FENCE rd=rs1=x0, fm=0, pred=0, 15
succ#0
FENCE rd=rs1=x0, fm=0, predzW, 15
succ=0
FENCE rd=rs1=x0, fm=0, pred=W, 1 PAUSE
succ=0

The RISC-V Instruction Set Manual Volume I | © RISC-V International

2.9. HINT Instructions | Page 38

Instruction Constraints Code Points Purpose
SLTI rd=x0 217
SLTIU rd=x0 217
SLLI rd=x0, and either rs7=x0 or 210 _q
shamt#31
SRLI rd=x0 210 Designated for custom
use
SRAI rd=x0, and either rs7=x0 or 210 _q
shamt#7
SLT rd=x0 210
SLTU rd=x0 210

sUli x0, x8, 0x1f and srai x0, x8, 7 were previously designated as custom HINTSs,

o but they have been appropriated for use in semihosting calls, as described in Section
2.8. To reflect their usage in practice, the base ISA spec has been changed to
designate them as standard HINTSs.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

3.1. RV32E and RV64E Programmers’ Model | Page 39

Chapter 3. RV32E and RV64E Base Integer Instruction Sets,
Version 2.0

This chapter describes a proposal for the RV32E and RV64E base integer instruction sets, designed for
microcontrollers in embedded systems. RV32E and RV64E are reduced versions of RV32I and RV64I,
respectively: the only change is to reduce the number of integer registers to 16. This chapter only
outlines the differences between RV32E/RV64E and RV32I/RV64I, and so should be read after
Chapter 2 and Chapter 4.

RV32E was designed to provide an even smaller base core for embedded
microcontrollers. There is also interest in RV64E for microcontrollers within large
o SoC designs, and to reduce context state for highly threaded 64-bit processors.

Unless otherwise stated, standard extensions compatible with RV32I and RV64I are
also compatible with RV32E and RV64E, respectively.

3.1. RV32E and RV64E Programmers’ Model

RV32E and RV64E reduce the integer register count to 16 general-purpose registers, (x0-x15), where xo
is a dedicated zero register.

We have found that in the small RV32I core implementations, the upper 16 registers

o consume around one quarter of the total area of the core excluding memories, thus
their removal saves around 25% core area with a corresponding core power
reduction.

3.2. RV32E and RV64E Instruction Set Encoding

RV32E and RV64E use the same instruction-set encoding as RV32I and RV64I respectively, except
that only registers x0-x15 are provided. All encodings specifying the other registers x16-x31 are
reserved.

The previous draft of this chapter made all encodings using the x16-x31 registers

o available as custom. This version takes a more conservative approach, making these
reserved so that they can be allocated between custom space or new standard
encodings at a later date.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

4.1. Register State | Page 40

Chapter 4. RV641I Base Integer Instruction Set, Version 2.1

This chapter describes the RV641 base integer instruction set, which builds upon the RV32I variant
described in Chapter 2. This chapter presents only the differences with RV32I, so should be read in
conjunction with the earlier chapter.

4.1. Register State

RV641 widens the integer registers and supported user address space to 64 bits (XLEN=64 in Table
3).

4.2. Integer Computational Instructions

Most integer computational instructions operate on XLEN-bit values. Additional instruction variants are
provided to manipulate 32-bit values in RV64I, indicated by a 'W' suffix to the opcode. These "*W"
instructions ignore the upper 32 bits of their inputs and always produce 32-bit signed values, sign-
extending them to 64 bits, i.e. bits XLEN-1 through 31 are equal.

The compiler and calling convention maintain an invariant that all 32-bit values are
held in a sign-extended format in 64-bit registers. Even 32-bit unsigned integers
extend bit 31 into bits 63 through 32. Consequently, conversion between unsigned
and signed 32-bit integers is a no-op, as is conversion from a signed 32-bit integer

o to a signed 64-bit integer. Existing 64-bit wide SLTU and unsigned branch compares
still operate correctly on unsigned 32-bit integers under this invariant. Similarly,
existing 64-bit wide logical operations on 32-bit sign-extended integers preserve the
sign-extension property. A few new instructions (ADD[I]W/SUBW/SxxW) are required
for addition and shifts to ensure reasonable performance for 32-bit values.

4.2.1. Integer Register-Immediate Instructions

31 20 19 15 14 12 1 7 6]
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
I-immediate[11:0] src ADDIW dest OP-IMM-32

ADDIW is an RV64I instruction that adds the sign-extended 12-bit immediate to register rs7 and
produces the proper sign extension of a 32-bit result in rd. Overflows are ignored and the result is the
low 32 bits of the result sign-extended to 64 bits. Note, ADDIW rd, rs1, ® writes the sign extension of
the lower 32 bits of register rs7 into register rd (assembler pseudoinstruction SEXT.W).

31 26 25 20 19 15 14 12 1 7 6]
imm[11:6] imm[5:0] rsi funct3 rd opcode
6 6 5 3 5 7
000000 shamt[5:0] src SLLI dest OP-IMM
000000 shamt[5:0] src SRLI dest OP-IMM
010000 shamt[5:0] src SRAI dest OP-IMM

Shifts by a constant are encoded as a specialization of the I-type format using the same instruction
opcode as RV32I. The operand to be shifted is in rs7, and the shift amount is encoded in the lower 6
bits of the I-immediate field for RV641I. The right shift type is encoded in bit 30. SLLI is a logical left

The RISC-V Instruction Set Manual Volume I | © RISC-V International

4.2. Integer Computational Instructions | Page 41

shift (zeros are shifted into the lower bits); SRLI is a logical right shift (zeros are shifted into the upper
bits); and SRAI is an arithmetic right shift (the original sign bit is copied into the vacated upper bits).

31 26 25 24 20 19 15 14 12 1 7 6]
imm[11:6] [5] imm([4:0] rsi funct3 rd opcode
6 1 5 5 3 5 7
000000 o shamt[4:0] src SLLIW dest OP-IMM-32
Q00000 o shamt[4:0] src SRLIW dest OP-IMM-32
010000] shamt[4:0] src SRAIW dest OP-IMM-32

SLLIW, SRLIW, and SRAIW are RV64I-only instructions that are analogously defined but operate on
32-bit values and sign-extend their 32-bit results to 64 bits. SLLIW, SRLIW, and SRAIW encodings
with imm[5] # ® are reserved.

Previously, SLLIW, SRLIW, and SRAIW with imm[5] # ® were defined to cause illegal-
o instruction exceptions, whereas now they are marked as reserved. This is a
backwards-compatible change.

31 12 1 7 6 o
imm[31:12] rd opcode
20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI (load upper immediate) uses the same opcode as RV32I. LUI places the 32-bit U-immediate into
register rd, filling in the lowest 12 bits with zeros. The 32-bit result is sign-extended to 64 bits.

AUIPC (add upper immediate to pc) uses the same opcode as RV32I. AUIPC is used to build pc
-relative addresses and uses the U-type format. AUIPC forms a 32-bit offset from the U-immediate,
filling in the lowest 12 bits with zeros, sign-extends the result to 64 bits, adds it to the address of the
AUIPC instruction, then places the result in register rd.

e Note that the set of address offsets that can be formed by pairing LUI with LD,
AUIPC with JALR, etc. in RV641I is [_p31_pl1 231_»11_4q],

4.2.2. Integer Register-Register Operations

31 25 24 20 19 15 14 12 1 7 6]
funct7 rs2 rsi funct3 rd opcode
7 5 5 3 5 7
0000000 src2 srcl SLL/SRL dest OP
0100000 src2 srci SRA dest OP
0000000 src2 srci ADDW dest OP-32
0000000 src2 srci SLLW/SRLW dest OP-32
0100000 src2 srci SUBW/SRAW dest OP-32

ADDW and SUBW are RV64I-only instructions that are defined analogously to ADD and SUB but
operate on 32-bit values and produce signed 32-bit results. Overflows are ignored, and the low 32-bits
of the result is sign-extended to 64-bits and written to the destination register.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in register
rs1 by the shift amount held in register rs2. In RV641I, only the low 6 bits of rs2 are considered for the
shift amount.

SLLW, SRLW, and SRAW are RV64I-only instructions that are analogously defined but operate on 32-
bit values and sign-extend their 32-bit results to 64 bits. The shift amount is given by rs2[4:0].

The RISC-V Instruction Set Manual Volume I | © RISC-V International

4.3. Load and Store Instructions | Page 42

4.3. Load and Store Instructions

RV64I1 extends the address space to 64 bits. The
the address space are legal to access.

execution environment will define what portions of

31 20 19 15 14 12 1 7 6 o
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
offset[11:0] base width dest LOAD
31 25 24 20 19 15 14 12 1 7 6]
imm[11:5] rs2 rsi funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

The LD instruction loads a 64-bit value from memory into register rd for RV641.

The LW instruction loads a 32-bit value from memory and sign-extends this to 64 bits before storing it
in register rd for RV641. The LWU instruction, on the other hand, zero-extends the 32-bit value from
memory for RV64I1. LH and LHU are defined analogously for 16-bit values, as are LB and LBU for 8-bit
values. The SD, SW, SH, and SB instructions store 64-bit, 32-bit, 16-bit, and 8-bit values from the low
bits of register rs2 to memory respectively.

4.4, HINT Instructions

All instructions that are microarchitectural HINTs in RV32I (see Chapter 2) are also HINTs in RV641I.
The additional computational instructions in RV64I1 expand both the standard and custom HINT
encoding spaces.

Table 7 lists all RV641 HINT code points. 91% of the HINT space is reserved for standard HINTSs, but
none are presently defined. The remainder of the HINT space is designated for custom HINTSs; no
standard HINTs will ever be defined in this subspace.

Table 7. RV64I HINT instructions.

Instruction Constraints Code Points Purpose
LUI rd=x0® 220
AUIPC rd=x0 220
ADDI rd=x0, and either rs7=x0 or 217 _q
imm=0
ANDI rd=x0 217 .
Designated for future
ORI rd=x® 217 standard use
XORI rd=x0® 217
ADDIW rd=x0 217
ADD rd=x0, rs1=x0® 210 _ 39
ADD rd=x0, rs1=x0, rs2#x2-x5 28

The RISC-V Instruction Set Manual Volume I | © RISC-V International

4.4, HINT Instructions | Page 43

Instruction Constraints Code Points Purpose

ADD rd=x0, rs1=x0, rs2=x2-x5 4 (rs2=x2) NTL.P1
(rs2=x3) NTL.PALL
(rs2=x4) NTL.S1
(rs2=x5) NTL.ALL

SLLI rd=x0, rs1=x0, shamt=31 1 Semihosting entry marker
SRAI rd=x0, rs1=x0, shamt=7 1 Semihosting exit marker
SuB rd=x0 210
AND rd=x0 210
OR rd=x0 210
XOR rd=x0® 210
SLL rd=x0 210
SRL rd=x® 210
SRA rd=x0 210
ADDW rd=x® 210
SuUBwW rd=x® 210
Designated for future

SLLW rd=x0 210 standard use
SRLW rd=x® 210
SRAW rd=x® 210
FENCE rd=x0, rs1=x0,fm=0, and 210 _ g3

either pred=0 or succ=0
FENCE rd=x0®, rs1=x0, fm=0, and 210 _g3

either pred=0 or succ=0
FENCE rd=rs1=x0, fm=0, pred=0, 15

succ#0
FENCE pred=0 or succ=0, 15

pred=W, succ =0
FENCE rd=rs1=x0, fm=0, pred=W, 1 PAUSE

succ=0

The RISC-V Instruction Set Manual Volume I | © RISC-V International

4.4, HINT Instructions | Page 44

Instruction
SLTI
SLTIU

SLLI

SRLI

SRAI

SLLIW
SRLIW
SRAIW
SLT
SLTU

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Constraints
rd=x0®
rd=x0®

rd=x0, and either rs1#x0 or
shamt#31

rd=x0

rd=x0, and either rs1zx0 or
shamt#7

rd=x0
rd=x0
rd=x0
rd=x0

rd=x0®

Code Points
217
217

2111

Purpose

Designated for custom use

slli x0, x8, 6x1f and srai x0, x0, 7 were previously designated as custom HINTS,
but they have been appropriated for use in semihosting calls, as described in Section
2.8. To reflect their usage in practice, the base ISA spec has been changed to

designate them as standard HINTSs.

Chapter 5. RV1281 Base Integer Instruction Set, Version 1.7 | Page 45
Chapter 5. RV128I Base Integer Instruction Set, Version 1.7

There is only one mistake that can be made in computer design that is difficult to
recover from—not having enough address bits for memory addressing and
memory management.

— Bell and Strecker, ISCA-3, 1976.

This chapter describes RV128I, a variant of the RISC-V ISA supporting a flat 128-bit address space.
The variant is a straightforward extrapolation of the existing RV32I and RV641 designs.

The primary reason to extend integer register width is to support larger address
spaces. It is not clear when a flat address space larger than 64 bits will be required.
At the time of writing, the fastest supercomputer in the world as measured by the
Top500 benchmark had over 1PB of DRAM, and would require over 50 bits of
address space if all the DRAM resided in a single address space. Some warehouse-
scale computers already contain even larger quantities of DRAM, and new dense
solid-state non-volatile memories and fast interconnect technologies might drive a
demand for even larger memory spaces. Exascale systems research is targeting

e 190PB memory systems, which occupy 57 bits of address space. At historic rates of
growth, it is possible that greater than 64 bits of address space might be required
before 2030. History suggests that whenever it becomes clear that more than 64 bits
of address space is needed, architects will repeat intensive debates about
alternatives to extending the address space, including segmentation, 96-bit address
spaces, and software workarounds, until, finally, flat 128-bit address spaces will be
adopted as the simplest and best solution. We have not frozen the RV128 spec at this
time, as there might be need to evolve the design based on actual usage of 128-bit
address spaces.

RV1281 builds upon RV64I in the same way RV641I builds upon RV32I, with integer registers extended
to 128 bits (i.e., XLEN=128). Most integer computational instructions are unchanged as they are
defined to operate on XLEN bits. The RV641 "*W" integer instructions that operate on 32-bit values in
the low bits of a register are retained but now sign extend their results from bit 31 to bit 127. A new set
of "*D" integer instructions are added that operate on 64-bit values held in the low bits of the 128-bit
integer registers and sign extend their results from bit 63 to bit 127. The "*D" instructions consume two
major opcodes (OP-IMM-64 and OP-64) in the standard 32-bit encoding.

To improve compatibility with RV64, in a reverse of how RV32 to RV64 was handled,

o we might change the decoding around to rename RV64I ADD as a 64-bit ADDD, and
add a 128-bit ADDQ in what was previously the OP-64 major opcode (now renamed
the OP-128 major opcode).

Shifts by an immediate (SLLI/SRLI/SRAI) are now encoded using the low 7 bits of the I-immediate,
and variable shifts (SLL/SRL/SRA) use the low 7 bits of the shift amount source register.

A LDU (load double unsigned) instruction is added using the existing LOAD major opcode, along with
new LQ and SQ instructions to load and store quadword values. SQ is added to the STORE major
opcode, while LQ is added to the MISC-MEM major opcode.

The floating-point instruction set is unchanged, although the 128-bit Q floating-point extension can

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 5. RV1281 Base Integer Instruction Set, Version 1.7 | Page 46

now support FMV.X.Q and FMV.Q.X instructions, together with additional FCVT instructions to and from
the T (128-bit) integer format.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 6. "Zifencei" Extension for Instruction-Fetch Fence, Version 2.0 | Page 47

Chapter 6. "Zifencei" Extension for Instruction-Fetch Fence,
Version 2.0

This chapter defines the "Zifencei" extension, which includes the FENCE.I instruction that provides
explicit synchronization between writes to instruction memory and instruction fetches on the same
hart. Currently, this instruction is the only standard mechanism to ensure that stores visible to a hart
will also be visible to its instruction fetches.

We considered but did not include a "store instruction word" instruction as in
(Tremblay et al, 2000). JIT compilers may generate a large trace of instructions

o before a single FENCE.I, and amortize any instruction cache snooping/invalidation
overhead by writing translated instructions to memory regions that are known not to
reside in the I-cache.

The FENCE.I instruction was designed to support a wide variety of implementations.
A simple implementation can flush the local instruction cache and the instruction
pipeline when the FENCE.I is executed. A more complex implementation might
snoop the instruction (data) cache on every data (instruction) cache miss, or use an
inclusive unified private L2 cache to invalidate lines from the primary instruction
cache when they are being written by a local store instruction. If instruction and data
caches are kept coherent in this way, or if the memory system consists of only
uncached RAMs, then just the fetch pipeline needs to be flushed at a FENCE.I.

The FENCE.I instruction was previously part of the base I instruction set. Two main
issues are driving moving this out of the mandatory base, although at time of writing
it is still the only standard method for maintaining instruction-fetch coherence.

First, it has been recognized that on some systems, FENCE.I will be expensive to
implement and alternate mechanisms are being discussed in the memory model task
group. In particular, for designs that have an incoherent instruction cache and an
incoherent data cache, or where the instruction cache refill does not snoop a

o coherent data cache, both caches must be completely flushed when a FENCE.I
instruction is encountered. This problem is exacerbated when there are multiple
levels of I and D cache in front of a unified cache or outer memory system.

Second, the instruction is not powerful enough to make available at user level in a
Unix-like operating system environment. The FENCE.I only synchronizes the local
hart, and the OS can reschedule the user hart to a different physical hart after the
FENCE.I. This would require the OS to execute an additional FENCE.I as part of every
context migration. For this reason, the standard Linux ABI has removed FENCE.I
from user-level and now requires a system call to maintain instruction-fetch
coherence, which allows the OS to minimize the number of FENCE.I executions
required on current systems and provides forward-compatibility with future improved
instruction-fetch coherence mechanisms.

Future approaches to instruction-fetch coherence under discussion include providing
more restricted versions of FENCE.I that only target a given address specified in rsf,
and/or allowing software to use an ABI that relies on machine-mode cache-
maintenance operations.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 6. "Zifencei" Extension for Instruction-Fetch Fence, Version 2.0 | Page 48

31 20 19 15 14 12 1 7 6 o
funct12 rsi funct3 rd opcode
12 5 3 5 7
)] FENCE.I) MISC-MEM

The FENCE.I instruction is used to synchronize the instruction and data streams. RISC-V does not
guarantee that stores to instruction memory will be made visible to instruction fetches on a RISC-V
hart until that hart executes a FENCE.I instruction. A FENCE.I instruction ensures that a subsequent
instruction fetch on a RISC-V hart will see any previous data stores already visible to the same RISC-V
hart. FENCE.I does not ensure that other RISC-V harts' instruction fetches will observe the local hart's
stores in a multiprocessor system. To make a store to instruction memory visible to all RISC-V harts,
the writing hart also has to execute a data FENCE before requesting that all remote RISC-V harts
execute a FENCE.I.

The unused fields in the FENCE.I instruction, imm[11:0], rs1, and rd, are reserved for finer-grain fences
in future extensions. For forward compatibility, base implementations shall ignore these fields, and
standard software shall zero these fields.

Because FENCE.I only orders stores with a hart’s own instruction fetches, application

e code should only rely upon FENCE.I if the application thread will not be migrated to a
different hart. The EEI can provide mechanisms for efficient multiprocessor
instruction-stream synchronization.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

7.1. CSR Instructions | Page 49

Chapter 7. "Zicsr", Extension for Control and Status Register
(CSR) Instructions, Version 2.0

RISC-V defines a separate address space of 4096 Control and Status registers associated with each
hart. This chapter defines the full set of CSR instructions that operate on these CSRs.

While CSRs are primarily used by the privileged architecture, there are several uses
in unprivileged code including for counters and timers, and for floating-point status.

e The counters and timers are no longer considered mandatory parts of the standard
base ISAs, and so the CSR instructions required to access them have been moved
out of Chapter 2 into this separate chapter.

7.1. CSR Instructions

All CSR instructions atomically read-modify-write a single CSR, whose CSR specifier is encoded in the
12-bit csr field of the instruction held in bits 31-20. The immediate forms use a 5-bit zero-extended
immediate encoded in the rs7 field.

31 20 19 15 14 12 11 7 6]

csr rsi funct3 rd opcode

12 5 3 5 7
source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest uimm[4:0] CSRRWI dest SYSTEM
source/dest uimm[4:0] CSRRSI dest SYSTEM
source/dest uimm[4:0] CSRRCI dest SYSTEM

The CSRRW (Atomic Read/Write CSR) instruction atomically swaps values in the CSRs and integer
registers. CSRRW reads the old value of the CSR, zero-extends the value to XLEN bits, then writes it to
integer register rd. The initial value in rs7 is written to the CSR. If rd=xg, then the instruction shall not
read the CSR and shall not cause any of the side effects that might occur on a CSR read.

The CSRRS (Atomic Read and Set Bits in CSR) instruction reads the value of the CSR, zero-extends the
value to XLEN bits, and writes it to integer register rd. The initial value in integer register rs7 is treated
as a bit mask that specifies bit positions to be set in the CSR. Any bit that is high in rs7 will cause the
corresponding bit to be set in the CSR, if that CSR bit is writable.

The CSRRC (Atomic Read and Clear Bits in CSR) instruction reads the value of the CSR, zero-extends
the value to XLEN bits, and writes it to integer register rd. The initial value in integer register rs7 is
treated as a bit mask that specifies bit positions to be cleared in the CSR. Any bit that is high in rs7
will cause the corresponding bit to be cleared in the CSR, if that CSR bit is writable.

For both CSRRS and CSRRC, if rs7=xe, then the instruction will not write to the CSR at all, and so shall
not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal-
instruction exceptions on accesses to read-only CSRs. Both CSRRS and CSRRC always read the
addressed CSR and cause any read side effects regardless of rs7 and rd fields. Note that if rs7
specifies a register other than xe, and that register holds a zero value, the instruction will not action
any attendant per-field side effects, but will action any side effects caused by writing to the entire CSR.

A CSRRW with rs7=x0 will attempt to write zero to the destination CSR.

The CSRRWI, CSRRSI, and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC respectively,

The RISC-V Instruction Set Manual Volume I | © RISC-V International

7.1. CSR Instructions | Page 50

except they update the CSR using an XLEN-bit value obtained by zero-extending a 5-bit unsigned
immediate (uimm[4:0]) field encoded in the rs7 field instead of a value from an integer register. For
CSRRSI and CSRRCI, if the uimm[4:0] field is zero, then these instructions will not write to the CSR,
and shall not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal-
instruction exceptions on accesses to read-only CSRs. For CSRRWI, if rd=xe, then the instruction shall
not read the CSR and shall not cause any of the side effects that might occur on a CSR read. Both
CSRRSI and CSRRCI will always read the CSR and cause any read side effects regardless of rd and rs7
fields.

Table 8. Conditions determining whether a CSR instruction reads or writes the specified CSR.

Register operand

Instruction rd is x0 rsiis x@ Reads CSR Writes CSR
CSRRW Yes - No Yes
CSRRW No - Yes Yes
CSRRS/CSRRC - Yes Yes No
CSRRS/CSRRC - No Yes Yes

Immediate operand

Instruction rdisx6 uimm = O Reads CSR Writes CSR
CSRRWI Yes - No Yes
CSRRWI No - Yes Yes
CSRRSI/CSRRCI - Yes Yes No
CSRRSI/CSRRCI - No Yes Yes

Table 8 summarizes the behavior of the CSR instructions with respect to whether they read and/or
write the CSR.

In addition to side effects that occur as a consequence of reading or writing a CSR, individual fields
within a CSR might have side effects when written. The CSRRWII] instructions action side effects for
all such fields within the written CSR. The CSRRS[I] an CSRRCI[I] instructions only action side effects
for fields for which the rs7 or uimm argument has at least one bit set corresponding to that field.

As of this writing, no standard CSRs have side effects on field writes. Hence, whether
e a standard CSR access has any side effects can be determined solely from the
opcode.

Defining CSRs with side effects on field writes is not recommended.

For any event or consequence that occurs due to a CSR having a particular value, if a write to the CSR
gives it that value, the resulting event or consequence is said to be an indirect effect of the write.
Indirect effects of a CSR write are not considered by the RISC-V ISA to be side effects of that write.

An example of side effects for CSR accesses would be if reading from a specific CSR
causes a light bulb to turn on, while writing an odd value to the same CSR causes the
light to turn off. Assume writing an even value has no effect. In this case, both the
o read and write have side effects controlling whether the bulb is lit, as this condition is
not determined solely from the CSR value. (Note that after writing an odd value to the
CSR to turn off the light, then reading to turn the light on, writing again the same odd

The RISC-V Instruction Set Manual Volume I | © RISC-V International

7.1. CSR Instructions | Page 51

value causes the light to turn off again. Hence, on the last write, it is not a change in
the CSR value that turns off the light.)

On the other hand, if a bulb is rigged to light whenever the value of a particular CSR
is odd, then turning the light on and off is not considered a side effect of writing to
the CSR but merely an indirect effect of such writes.

More concretely, the RISC-V privileged architecture defined in Volume II specifies
that certain combinations of CSR values cause a trap to occur. When an explicit write
to a CSR creates the conditions that trigger the trap, the trap is not considered a side
effect of the write but merely an indirect effect.

Standard CSRs do not have any side effects on reads. Standard CSRs may have side
effects on writes. Custom extensions might add CSRs for which accesses have side
effects on either reads or writes.

Some CSRs, such as the instructions-retired counter, instret, may be modified as side effects of
instruction execution. In these cases, if a CSR access instruction reads a CSR, it reads the value prior
to the execution of the instruction. If a CSR access instruction writes such a CSR, the explicit write is
done instead of the update from the side effect. In particular, a value written to instret by one
instruction will be the value read by the following instruction.

The assembler pseudoinstruction to read a CSR, CSRR rd, csr, is encoded as CSRRS rd, csr, x0. The
assembler pseudoinstruction to write a CSR, CSRW csr, rs1, is encoded as CSRRW x@, csr, rs1, while
CSRWI csr, uimm, is encoded as CSRRWI x®, csr, uimm.

Further assembler pseudoinstructions are defined to set and clear bits in the CSR when the old value
is not required: CSRS/CSRC csr, rs1, CSRSI/CSRCI csr, uimm.

7.1.1. CSR Access Ordering

Each RISC-V hart normally observes its own CSR accesses, including its implicit CSR accesses, as
performed in program order. In particular, unless specified otherwise, a CSR access is performed after
the execution of any prior instructions in program order whose behavior modifies or is modified by the
CSR state and before the execution of any subsequent instructions in program order whose behavior
modifies or is modified by the CSR state. Furthermore, an explicit CSR read returns the CSR state
before the execution of the instruction, while an explicit CSR write suppresses and overrides any
implicit writes or modifications to the same CSR by the same instruction.

Likewise, any side effects from an explicit CSR access are normally observed to occur synchronously in
program order. Unless specified otherwise, the full consequences of any such side effects are
observable by the very next instruction, and no consequences may be observed out-of-order by
preceding instructions. (Note the distinction made earlier between side effects and indirect effects of
CSR writes.)

For the RVWMO memory consistency model (Chapter 18), CSR accesses are weakly ordered by default,
so other harts or devices may observe CSR accesses in an order different from program order. In
addition, CSR accesses are not ordered with respect to explicit memory accesses, unless a CSR access
modifies the execution behavior of the instruction that performs the explicit memory access or unless
a CSR access and an explicit memory access are ordered by either the syntactic dependencies defined
by the memory model or the ordering requirements defined by the Memory-Ordering PMAs section in
Volume II of this manual. To enforce ordering in all other cases, software should execute a FENCE

The RISC-V Instruction Set Manual Volume I | © RISC-V International

7.1. CSR Instructions | Page 52

instruction between the relevant accesses. For the purposes of the FENCE instruction, CSR read
accesses are classified as device input (I), and CSR write accesses are classified as device output (O).

Informally, the CSR space acts as a weakly ordered memory-mapped I/0 region, as
defined by the Memory-Ordering PMAs section in Volume II of this manual. As a
result, the order of CSR accesses with respect to all other accesses is constrained by
the same mechanisms that constrain the order of memory-mapped I/0 accesses to
such a region.

These CSR-ordering constraints are imposed to support ordering main memory and

o memory-mapped I/0 accesses with respect to CSR accesses that are visible to, or
affected by, devices or other harts. Examples include the time, cycle, and mcycle CSRS,
in addition to CSRs that reflect pending interrupts, like mip and sip. Note that implicit
reads of such CSRs (e.qg. taking an interrupt because of a change in mip) are also
ordered as device input.

Most CSRs (including, e.g., the fcsr) are not visible to other harts; their accesses can
be freely reordered in the global memory order with respect to FENCE instructions
without violating this specification.

The hardware platform may define that accesses to certain CSRs are strongly ordered, as defined by
the Memory-Ordering PMAs section in Volume II of this manual. Accesses to strongly ordered CSRs
have stronger ordering constraints with respect to accesses to both weakly ordered CSRs and
accesses to memory-mapped I/0 regions.

The rules for the reordering of CSR accesses in the global memory order should
o probably be moved to Chapter 18 concerning the RVWMO memory consistency
model.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

8.1. "Zicntr" Extension for Base Counters and Timers | Page 53

Chapter 8. "Zicntr" and "Zihpm" Extensions for Counters,
Version 2.0

RISC-V ISAs provide a set of up to thirty-two 64-bit performance counters and timers that are
accessible via unprivileged XLEN-bit read-only CSR registers 0xcee-0xc1F (when XLEN=32, the upper 32
bits are accessed via CSR registers 0xc86-0xC9F). These counters are divided between the "Zicntr" and
"Zihpm" extensions.

8.1. "Zicntr" Extension for Base Counters and Timers

The Zicntr standard extension comprises the first three of these counters (CYCLE, TIME, and
INSTRET), which have dedicated functions (cycle count, real-time clock, and instructions retired,
respectively). The Zicntr extension depends on the Zicsr extension.

We recommend provision of these basic counters in implementations as they are
essential for basic performance analysis, adaptive and dynamic optimization, and to
allow an application to work with real-time streams. Additional counters in the
o separate Zihpom extension can help diagnose performance problems and these
should be made accessible from user-level application code with low overhead.

Some execution environments might prohibit access to counters, for example, to
impede timing side-channel attacks.

31 20 19 15 14 12 1 7 6]
csr rs1 funct3 rd opcode
12 5 3 5 7
RDCYCLE[H] o CSRRS dest SYSTEM
RDTIME[H] o CSRRS dest SYSTEM
RDINSTRET[H] o CSRRS dest SYSTEM

For base ISAs with XLEN=64, CSR instructions can access the full 64-bit CSRs directly. In particular,
the RDCYCLE, RDTIME, and RDINSTRET pseudoinstructions read the full 64 bits of the cycle, time, and
instret counters.

The counter pseudoinstructions are mapped to the read-only csrrs rd, counter, x0
0 canonical form, but the other read-only CSR instruction forms (based on
CSRRC/CSRRSI/CSRRCI) are also legal ways to read these CSRs.

For base ISAs with XLEN=32, the Zicntr extension enables the three 64-bit read-only counters to be
accessed in 32-bit pieces. The RDCYCLE, RDTIME, and RDINSTRET pseudoinstructions provide the
lower 32 bits, and the RDCYCLEH, RDTIMEH, and RDINSTRETH pseudoinstructions provide the upper
32 bits of the respective counters.

We required the counters be 64 bits wide, even when XLEN=32, as otherwise it is
very difficult for software to determine if values have overflowed. For a low-end

o implementation, the upper 32 bits of each counter can be implemented using
software counters incremented by a trap handler triggered by overflow of the lower
32 bits. The sample code given below shows how the full 64-bit width value can be
safely read using the individual 32-bit width pseudoinstructions.

The RDCYCLE pseudoinstruction reads the low XLEN bits of the cycte CSR which holds a count of the
number of clock cycles executed by the processor core on which the hart is running from an arbitrary
start time in the past. RDCYCLEH is only present when XLEN=32 and reads bits 63-32 of the same

The RISC-V Instruction Set Manual Volume I | © RISC-V International

8.1. "Zicntr" Extension for Base Counters and Timers | Page 54

cycle counter. The underlying 64-bit counter should never overflow in practice. The rate at which the
cycle counter advances will depend on the implementation and operating environment. The execution
environment should provide a means to determine the current rate (cycles/second) at which the cycle
counter is incrementing.

RDCYCLE is intended to return the number of cycles executed by the processor core,
not the hart. Precisely defining what is a ‘"core" 1is difficult given some
implementation choices (e.g., AMD Bulldozer). Precisely defining what is a "clock
cycle" is also difficult given the range of implementations (including software
emulations), but the intent is that RDCYCLE is used for performance monitoring
along with the other performance counters. In particular, where there is one
hart/core, one would expect cycle-count/instructions-retired to measure CPI for a
hart.

Cores don’t have to be exposed to software at all, and an implementor might choose
to pretend multiple harts on one physical core are running on separate cores with
one hart/core, and provide separate cycle counters for each hart. This might make
sense in a simple barrel processor (e.g., CDC 6600 peripheral processors) where
inter-hart timing interactions are non-existent or minimal.

Where there is more than one hart/core and dynamic multithreading, it is not
generally possible to separate out cycles per hart (especially with SMT). It might be
possible to define a separate performance counter that tried to capture the number
of cycles a particular hart was running, but this definition would have to be very fuzzy
to cover all the possible threading implementations. For example, should we only

o count cycles for which any instruction was issued to execution for this hart, and/or
cycles any instruction retired, or include cycles this hart was occupying machine
resources but couldn’t execute due to stalls while other harts went into execution?
Likely, "all of the above" would be needed to have understandable performance stats.
This complexity of defining a per-hart cycle count, and also the need in any case for a
total per-core cycle count when tuning multithreaded code led to just standardizing
the per-core cycle counter, which also happens to work well for the common single
hart/core case.

Standardizing what happens during "sleep" is not practical given that what "sleep"
means is not standardized across execution environments, but if the entire core is
paused (entirely clock-gated or powered-down in deep sleep), then it is not executing
clock cycles, and the cycle count shouldn’t be increasing per the spec. There are
many details, e.g., whether clock cycles required to reset a processor after waking up
from a power-down event should be counted, and these are considered execution-
environment-specific details.

Even though there is no precise definition that works for all platforms, this is still a
useful facility for most platforms, and an imprecise, common, "usually correct"
standard here is better than no standard. The intent of RDCYCLE was primarily
performance monitoring/tuning, and the specification was written with that goal in
mind.

The RDTIME pseudoinstruction reads the low XLEN bits of the "time" CSR, which counts wall-clock real
time that has passed from an arbitrary start time in the past. RDTIMEH is only present when XLEN=32
and reads bits 63-32 of the same real-time counter. The underlying 64-bit counter increments by one
with each tick of the real-time clock, and, for realistic real-time clock frequencies, should never

The RISC-V Instruction Set Manual Volume I | © RISC-V International

8.2. "Zihpm" Extension for Hardware Performance Counters | Page 55

overflow in practice. The execution environment should provide a means of determining the period of a
counter tick (seconds/tick). The period should be constant within a small error bound. The environment
should provide a means to determine the accuracy of the clock (i.e., the maximum relative error
between the nominal and actual real-time clock periods).

On some simple platforms, cycle count might represent a valid implementation of
RDTIME, in which case RDTIME and RDCYCLE may return the same result.

o It is difficult to provide a strict mandate on clock period given the wide variety of
possible implementation platforms. The maximum error bound should be set based
on the requirements of the platform.

The real-time clocks of all harts must be synchronized to within one tick of the real-time clock.

As with other architectural mandates, it suffices to appear "as if" harts are

0 synchronized to within one tick of the real-time clock, i.e. software is unable to
observe that there is a greater delta between the real-time clock values observed on
two harts.

The RDINSTRET pseudoinstruction reads the low XLEN bits of the instret CSR, which counts the
number of instructions retired by this hart from some arbitrary start point in the past. RDINSTRETH is
only present when XLEN=32 and reads bits 63-32 of the same instruction counter. The underlying 64-
bit counter should never overflow in practice.

e Instructions that cause synchronous exceptions, including ECALL and EBREAK, are
not considered to retire and hence do not increment the instret CSR.

The following code sequence will read a valid 64-bit cycle counter value into x3:x2, even if the counter
overflows its lower half between reading its upper and lower halves.

again:
rdcycleh X3
rdcycle X2
rdcycleh X4
bne X3, X4, again

Listing 1. Sample code for reading the 64-bit cycle counter when XLEN=32.

8.2. "Zihpm" Extension for Hardware Performance Counters

The Zihpm extension comprises up to 29 additional unprivileged 64-bit hardware performance
counters, hpmcounter3-hpmcounter31l. When XLEN=32, the upper 32 bits of these performance counters
are accessible via additional CSRs hpmcounter3h- hpmcounter3ih. The Zihpm extension depends on the
Zicsr extension.

In some applications, it is important to be able to read multiple counters at the same
instant in time. When run under a multitasking environment, a user thread can suffer
a context switch while attempting to read the counters. One solution is for the user
o thread to read the real-time counter before and after reading the other counters to
determine if a context switch occurred in the middle of the sequence, in which case
the reads can be retried. We considered adding output latches to allow a user thread
to snapshot the counter values atomically, but this would increase the size of the

The RISC-V Instruction Set Manual Volume I | © RISC-V International

8.2. "Zihpm" Extension for Hardware Performance Counters | Page 56

user context, especially for implementations with a richer set of counters.

The implemented number and width of these additional counters, and the set of events they count, is
platform-specific. Accessing an unimplemented or ill-configured counter may cause an illegal-
instruction exception or may return a constant value.

The execution environment should provide a means to determine the number and width of the
implemented counters, and an interface to configure the events to be counted by each counter.

For execution environments implemented on RISC-V privileged platforms, the
privileged architecture manual describes privileged CSRs controlling access by lower
privileged modes to these counters, and to set the events to be counted.

Alternative execution environments (e.g., user-level-only software performance
0 models) may provide alternative mechanisms to configure the events counted by the
performance counters.

It would be useful to eventually standardize event settings to count ISA-level metrics,
such as the number of floating-point instructions executed for example, and possibly
a few common microarchitectural metrics, such as "L1 instruction cache misses".

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 9. "Zihintntl" Extension for Non-Temporal Locality Hints, Version 1.8 | Page 57

Chapter 9. "Zihintntl" Extension for Non-Temporal Locality
Hints, Version 1.0

The NTL instructions are HINTs that indicate that the explicit memory accesses of the immediately
subsequent instruction (henceforth "target instruction") exhibit poor temporal locality of reference. The
NTL instructions do not change architectural state, nor do they alter the architecturally visible effects
of the target instruction. Four variants are provided:

The NTL.P1instruction indicates that the target instruction does not exhibit temporal locality within the
capacity of the innermost level of private cache in the memory hierarchy. NTL.P1 is encoded as ADD
X0, x0, x2.

The NTL.PALL instruction indicates that the target instruction does not exhibit temporal locality within
the capacity of any level of private cache in the memory hierarchy. NTL.PALL is encoded as ADD x0,
X0, x3.

The NTL.S1 instruction indicates that the target instruction does not exhibit temporal locality within the
capacity of the innermost level of shared cache in the memory hierarchy. NTL.S1 is encoded as ADD
X0, x0, x4.

The NTL.ALL instruction indicates that the target instruction does not exhibit temporal locality within
the capacity of any level of cache in the memory hierarchy. NTL.ALL is encoded as ADD x0, x0, x5.

The NTL instructions can be used to avoid cache pollution when streaming data or
traversing large data structures, or to reduce latency in producer-consumer
interactions.

A microarchitecture might use the NTL instructions to inform the cache replacement
policy, or to decide which cache to allocate into, or to avoid cache allocation
altogether. For example, NTL.P1 might indicate that an implementation should not
allocate a line in a private L1 cache, but should allocate in L2 (whether private or
shared). In another implementation, NTL.P1 might allocate the line in L1, but in the
least-recently used state.

e NTL.ALL will typically inform implementations not to allocate anywhere in the cache
hierarchy. Programmers should use NTL.ALL for accesses that have no exploitable
temporal locality.

Like any HINTs, these instructions may be freely ignored. Hence, although they are
described in terms of cache-based memory hierarchies, they do not mandate the
provision of caches.

Some implementations might respect these HINTs for some memory accesses but
not others: e.q., implementations that implement LR/SC by acquiring a cache line in
the exclusive state in L1 might ignore NTL instructions on LR and SC, but might
respect NTL instructions for AMOs and regular loads and stores.

Table 9 lists several software use cases and the recommended NTL variant that portable software—i.e.,
software not tuned for any specific implementation’s memory hierarchy—should use in each case.

Table 9. Recommended NTL variant for portable software to employ in various scenarios.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 9. "Zihintntl" Extension for Non-Temporal Locality Hints, Version 1.9 | Page 58

Scenario Recommended NTL variant
Access to a working set between and in size NTL.P1

Access to a working set between and in size NTL.PALL

Access to a working set greater than in size NTL.S1

Access with no exploitable temporal locality (e.g., streaming) NTL.ALL

Access to a contended synchronization variable NTL.PALL

The working-set sizes listed in Table 9 are not meant to constrain implementers'
0 cache-sizing decisions. Cache sizes will obviously vary between implementations,
and so software writers should only take these working-set sizes as rough guidelines.

Table 10 lists several sample memory hierarchies and recommends how each NTL variant maps onto
each cache level. The table also recommends which NTL variant that implementation-tuned software
should use to avoid allocating in a particular cache level. For example, for a system with a private L1
and a shared L2, it is recommended that NTL.P1 and NTL.PALL indicate that temporal locality cannot
be exploited by the L1, and that NTL.S1 and NTL.ALL indicate that temporal locality cannot be exploited
by the L2. Furthermore, software tuned for such a system should use NTL.P1 to indicate a lack of
temporal locality exploitable by the L1, or should use NTL.ALL indicate a lack of temporal locality
exploitable by the L2.

If the C extension is provided, compressed variants of these HINTs are also provided: C.NTL.P1 is
encoded as C.ADD x0, x2; C.NTL.PALL is encoded as C.ADD x0, x3; C.NTL.S1 is encoded as C.ADD x0,
x4; and C.NTL.ALL is encoded as C.ADD x0, x5.

The NTL instructions affect all memory-access instructions except the cache-management instructions
in the Zicbom extension.

As of this writing, there are no other exceptions to this rule, and so the NTL

instructions affect all memory-access instructions defined in the base ISAs and the

A F, D, Q C, and V standard extensions, as well as those defined within the
o hypervisor extension in Volume II.

The NTL instructions can affect cache-management operations other than those in
the Zicbom extension. For example, NTL.PALL followed by CBO.ZERO might indicate
that the line should be allocated in L3 and zeroed, but not allocated in L1 or L2.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 9. "Zihintntl" Extension for Non-Temporal Locality Hints, Version 1.9 | Page 59

Table 10. Mapping of NTL variants to various memory hierarchies.

Memory hierarchy Recommended mapping of NTL Recommended NTL variant for
variant to actual cache level explicit cache management
P1 PALL S ALL L1 L2 L3 L4/L5

Common Scenarios

No caches — none

Private L1 only L1 L1 L1 L1 ALL --—- -— -—
Private L1; shared L2 L1 L1 L2 L2 P1 ALL - -—
Private L1; shared L2/L3 L1 L1 L2 L3 P1 S1 ALL -—
Private L1/L2 L1 L2 L2 L2 P1 ALL -- -
Private L1/L2; shared L3 L1 L2 L3 L3 P1 PALL ALL -—-
Private L1/L2; shared L3/L4 L1 L2 L3 L4 P1 PALL S1 ALL

Uncommon Scenarios

Private L1/L2/L3; shared L4 L1 L3 L4 L4 P1 P1 PALL ALL
Private L1; shared L2/L3/L4 L1 L1 L2 L4 P1 S1 ALL ALL
Private L1/L2; shared L3/L4/L5 L1 L2 L3 L5 P1 PALL S1 ALL
Private L1/L2/L3; shared L4/L5 L1 L3 L4 LS P1 P1 PALL ALL

When an NTL instruction is applied to a prefetch hint in the Zicbop extension, it indicates that a cache
line should be prefetched into a cache that is outer from the level specified by the NTL.

For example, in a system with a private L1 and shared L2, NTL.P1 followed by
PREFETCH.R might prefetch into L2 with read intent.

o To prefetch into the innermost level of cache, do not prefix the prefetch instruction
with an NTL instruction.

In some systems, NTL.ALL followed by a prefetch instruction might prefetch into a
cache or prefetch buffer internal to a memory controller.

Software is discouraged from following an NTL instruction with an instruction that does not explicitly
access memory. Nonadherence to this recommendation might reduce performance but otherwise has
no architecturally visible effect.

In the event that a trap is taken on the target instruction, implementations are discouraged from
applying the NTL to the first instruction in the trap handler. Instead, implementations are
recommended to ignore the HINT in this case.

If an interrupt occurs between the execution of an NTL instruction and its target
instruction, execution will normally resume at the target instruction. That the NTL
instruction is not reexecuted does not change the semantics of the program.

0 Some implementations might prefer not to process the NTL instruction until the
target instruction is seen (e.g., so that the NTL can be fused with the memory access
it modifies). Such implementations might preferentially take the interrupt before the
NTL, rather than between the NTL and the memory access.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 9. "Zihintntl" Extension for Non-Temporal Locality Hints, Version 1.0 | Page 60

Since the NTL instructions are encoded as ADDs, they can be used within LR/SC

0 loops without voiding the forward-progress guarantee. But, since using other loads
and stores within an LR/SC loop does void the forward-progress guarantee, the only
reason to use an NTL within such a loop is to modify the LR or the SC.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 10. "Zihintpause" Extension for Pause Hint, Version 2.0 | Page 61

Chapter 10. "Zihintpause" Extension for Pause Hint, Version 2.0

The PAUSE instruction is a HINT that indicates the current hart’s rate of instruction retirement should
be temporarily reduced or paused. The duration of its effect must be bounded and may be zero.

Software can use the PAUSE instruction to reduce energy consumption while
executing spin-wait code sequences. Multithreaded cores might temporarily
relinquish execution resources to other harts when PAUSE is executed. It is
recommended that a PAUSE instruction generally be included in the code sequence
for a spin-wait loop.

A future extension might add primitives similar to the x86 MONITOR/MWAIT

instructions, which provide a more efficient mechanism to wait on writes to a specific

memory location. However, these instructions would not supplant PAUSE. PAUSE is

more appropriate when polling for non-memory events, when polling for multiple
o events, or when software does not know precisely what events it is polling for.

The duration of a PAUSE instruction’s effect may vary significantly within and among
implementations. In typical implementations this duration should be much less than
the time to perform a context switch, probably more on the rough order of an on-chip
cache miss latency or a cacheless access to main memory.

A series of PAUSE instructions can be used to create a cumulative delay loosely
proportional to the number of PAUSE instructions. In spin-wait loops in portable
code, however, only one PAUSE instruction should be used before re-evaluating loop
conditions, else the hart might stall longer than optimal on some implementations,
degrading system performance.

PAUSE is encoded as a FENCE instruction with pred=w, succ=6, fm=0, rd=x0, and rs1=xe.

PAUSE is encoded as a hint within the FENCE opcode because some
implementations are expected to deliberately stall the PAUSE instruction until
outstanding memory transactions have completed. Because the successor set is null,
however, PAUSE does not mandate any particular memory ordering—hence, it truly is

o a HINT.

Like other FENCE instructions, PAUSE cannot be used within LR/SC sequences
without voiding the forward-progress guarantee.

The choice of a predecessor set of W is arbitrary, since the successor set is null.
Other HINTs similar to PAUSE might be encoded with other predecessor sets.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 11. "Zimop" Extension for May-Be-Operations, Version 1.0 | Page 62

Chapter 11. "Zimop" Extension for May-Be-Operations, Version
1.0

This chapter defines the "Zimop" extension, which introduces the concept of instructions that may be
operations (MOPs). MOPs are initially defined to simply write zero to x[rd], but are designed to be
redefined by later extensions to perform some other action. The Zimop extension defines an encoding
space for 40 MOPs.

It is sometimes desirable to define instruction-set extensions whose instructions,

rather than raising illegal-instruction exceptions when the extension is not

implemented, take no useful action (beyond writing x[rdl). For example, programs

with control-flow integrity checks can execute correctly on implementations without

the corresponding extension, provided the checks are simply ignored. Implementing

these checks as MOPs allows the same programs to run on implementations with or
o without the corresponding extension.

Although similar in some respects to HINTs, MOPs cannot be encoded as HINTS,
because unlike HINTs, MOPs are allowed to alter architectural state.

Because MOPs may be redefined by later extensions, standard software should not
execute a MOP unless it is deliberately targeting an extension that has redefined that
MORP.

The Zimop extension defines 32 MOP instructions named MOP.R.n, where n is an integer between ®
and 31, inclusive. Unless redefined by another extension, these instructions simply write ® to x[rd].
Their encoding allows future extensions to define them to read x[rs1], as well as write x[rd].

31 30 29 28 27 26 25 22 21 20 19 15 14 12 1N 7 6 N
| 1 n[4]| (] | n[3:2] | o 1 1 1 | n[1.0] | rs1 1 08 0 rd 1 1 108 6 1 1
SYSTEM

The Zimop extension additionally defines 8 MOP instructions named MOP.RR.n, where n is an integer
between ® and 7, inclusive. Unless redefined by another extension, these instructions simply write ® to
x[rd]. Their encoding allows future extensions to define them to read x[rs1] and x[rs2], as well as write
x[rd].

31 30 29 28 27 26 25 24 20 19 15 14 12 1N 7 6 o
| 1 |n[2]| o @0 | n[1:0] | 1 | rs2 rsi 1 o 0 rd 1 1 1 o 0 1
SYSTEM

The recommended assembly syntax for MOP.R.n is MOP.R.n rd, rs1, with any x

o -register specifier being valid for either argument. Similarly for MOP.RR.n, the
recommended syntax is MOP.RR.n rd, rs1, rs2. The extension that redefines a MOP
may define an alternate assembly mnemonic.

0 These MOPs are encoded in the SYSTEM major opcode in part because it is
expected their behavior will be modulated by privileged CSR state.

These MOPs are defined to write zero to x[rdl, rather than performing no operation,
o to simplify instruction decoding and to allow testing the presence of features by
branching on the zeroness of the result.

The MOPs defined in the Zimop extension do not carry a syntactic dependency from x[rs1] or x[rs2] to
x[rd], though an extension that redefines the MOP may impose such a requirement.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

11.1. "Zcmop" Compressed May-Be-Operations Extension, Version 1.0 | Page 63

o Not carrying a syntactic dependency relieves straightforward implementations of
reading x[rs1] and x[rs2].

11.1. "Zcmop" Compressed May-Be-Operations Extension, Version 1.0

This section defines the "Zcmop" extension, which defines eight 16-bit MOP instructions named
C.MOP.n, where n is an odd integer between 1 and 15, inclusive. C.MOP.n is encoded in the reserved
encoding space corresponding to C.LUI xn, ®, as shown in Table 11. Unlike the MOPs defined in the
Zimop extension, the C.MOP.n instructions are defined to not write any register. Their encoding allows
future extensions to define them to read register x[n].

The Zcmop extension depends upon the Zca extension.

15 13 12 1 10 8 7 6 2 1 o
) 1 1 o o n[3:1] 1) o) o o) 1

Very few suitable 16-bit encoding spaces exist. This space was chosen because it
e already has unusual behavior with respect to the rd/rs1 field—it encodes c.addilésp

when the field contains x2--and is therefore of lower value for most purposes.

Table 11. C.MOP.n instruction encoding.

Mnemonic Encoding Redefinable to read register
C.MOP.1 0110000016000001 x1
C.MOP.3 0110000116000001 x3
C.MOP.5 0110001016000001 x5
C.MOP.7 0110001116000001 x7
C.MOP.9 0110016016000001 x9
C.MOP.11 0110010116000001 x11
C.MOP.13 0110011016000001 x13
C.MOP.15 0110011116000001 x15
The recommended assembly syntax for C.MOP.n is simply the nullary C.MOP.n. The
o possibly accessed register is implicitly xn.

The expectation is that each Zcmop instruction is equivalent to some Zimop

6 instruction, but the choice of expansion (if any) is left to the extension that redefines
the MOP. Note, a Zcmop instruction that does not write a value can expand into a
write to xe.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

12.1. Introduction | Page 64

Chapter 12. "Zicond" Extension for Integer Conditional
Operations, Version 1.0.0

12.1. Introduction

The Zicond extension defines a simple solution that provides most of the benefit and all of the
flexibility one would desire to support conditional arithmetic and conditional-select/move operations,
while remaining true to the RISC-V design philosophy. The instructions follow the format for R-type
instructions with 3 operands (i.e.,, 2 source operands and 1 destination operand). Using these
instructions, branchless sequences can be implemented (typically in two-instruction sequences)
without the need for instruction fusion, special provisions during the decoding of architectural
instructions, or other microarchitectural provisions.

One of the shortcomings of RISC-V, compared to competing instruction set architectures, is the
absence of conditional operations to support branchless code-generation: this includes conditional
arithmetic, conditional select and conditional move operations. The design principles of RISC-V (e.g.
the absence of an instruction-format that supports 3 source registers and an output register) make it
unlikely that direct equivalents of the competing instructions will be introduced.

Yet, low-cost conditional instructions are a desirable feature as they allow the replacement of branches
in a broad range of suitable situations (whether the branch turns out to be unpredictable or
predictable) so as to reduce the capacity and aliasing pressures on BTBs and branch predictors, and to
allow for longer basic blocks (for both the hardware and the compiler to work with).

12.2. Zicond specification

The "Conditional" operations extension provides a simple solution that provides most of the benefit
and all of the flexibility one would desire to support conditional arithmetic and conditional-select/move
operations, while remaining true to the RISC-V design philosophy. The instructions follow the format
for R-type instructions with 3 operands (i.e., 2 source operands and 1 destination operand). Using these
instructions, branchless sequences can be implemented (typically in two-instruction sequences)
without the need for instruction fusion, special provisions during the decoding of architectural
instructions, or other microarchitectural provisions.

The following instructions comprise the Zicond extension:

RV32 RV64 Mnemonic Instruction
V4 4 czero.eqz rd, rs1, rs2 Conditional zero, if condition is equal to zero
v V4 czero.nez rd, rsi, rs2 Conditional zero, if condition is nonzero

Architecture Comment: defining additional comparisons, in addition to equal-to-zero
o and not-equal-to-zero, does not offer a benefit due to the lack of immediates or an
additional register operand that the comparison takes place against.

Based on these two instructions, synthetic instructions (i.e., short instruction sequences) for the
following conditional arithmetic operations are supported:

® conditional add, if zero

® conditional add, if non-zero

The RISC-V Instruction Set Manual Volume I | © RISC-V International

12.3. Instructions (in alphabetical order) | Page 65

® conditional subtract, if zero

® conditional subtract, if non-zero

® conditional bitwise-and, if zero

® conditional bitwise-and, if non-zero
® conditional bitwise-or, if zero

® conditional bitwise-or, if non-zero
® conditional bitwise-xor, if zero

® conditional bitwise-xor, if non-zero
Additionally, the following conditional select instructions are supported:

® conditional-select, if zero

® conditional-select, if non-zero

More complex conditions, such as comparisons against immediates, registers, single-bit tests,
comparisons against ranges, etc. can be realized by composing these new instructions with existing
instructions.

12.3. Instructions (in alphabetical order)

12.3.1. czero.eqz

Synopsis
Moves zero to a register rd, if the condition rs2 is equal to zero, otherwise moves rs17 to rd.

Mnemonic

czero.eqz rd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6]

O 0 0 O 1 1 1 rs2 rsi 1 0 1 rd O 1.1 06 0 1 1
CZERO condition value CZERO.EQZ OP

Description

If rs2 contains the value zero, this instruction writes the value zero to rd. Otherwise, this instruction
copies the contents of rs7 to rd.

This instruction carries a syntactic dependency from both rs7 and rs2 to rd. Furthermore, if the Zkt
extension is implemented, this instruction’s timing is independent of the data values in rs7 and rs2.

SAIL code
let condition = X(rs2);
result : xlenbits = if (condition == zeros()) then zeros()

else X(rsl);
X(rd) = result;

The RISC-V Instruction Set Manual Volume I | © RISC-V International

12.3. Instructions (in alphabetical order) | Page 66

The RISC-V Instruction Set Manual Volume I | © RISC-V International

12.4. Usage examples | Page 67
12.3.2. czero.nez

Synopsis

Moves zero to a register rd, if the condition rs2 is nonzero, otherwise moves rs7 to ra.

Mnemonic

czero.nez rd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 1M 7 6 0

® 8 0 8 1 1 1 rs2 rsi 11 1 rd ® 1 1. 8 0 1 1
CZERO condition value CZERO.NEZ OP

Description

If rs2 contains a nonzero value, this instruction writes the value zero to rd. Otherwise, this
instruction copies the contents of rs7 to rd.

This instruction carries a syntactic dependency from both rs7 and rs2 to rd. Furthermore, if the Zkt
extension is implemented, this instruction’s timing is independent of the data values in rs7 and rs2.

SAIL code

let condition = X(rs2);

result : xlenbits = if (condition != zeros()) then zeros()
else X(rsl);

X(rd) = result;

12.4. Usage examples

The instructions from this extension can be used to construct sequences that perform conditional-
arithmetic, conditional-bitwise-logical, and conditional-select operations.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

12.4. Usage examples | Page 68
12.4.1. Instruction sequences

Operation

Conditional add, if zero
rd = (rc == 0) ? (rs1 + rs2) : rsi

Conditional add, if non-zero
rd = (rc !'=0) ? (rs1 + rs2) : rsi

Conditional subtract, if zero
rd = (rc == 0) ? (rsl - rs2) : rsil

Conditional subtract, if non-zero
rd = (rc !'=0) ? (rs1 - rs2) : rsi

Conditional bitwise-or, if zero
rd = (rc == 0) ? (rs1 | rs2) : rsi

Conditional bitwise-or, if non-zero
rd = (rc !'=0) ? (rs1 | rs2) : rsi

Conditional bitwise-xor, if zero
rd = (rc == 0) ? (rs1 ” rs2) : rsi

Conditional bitwise-xor, if non-zero
rd = (rc !=0) ? (rs1 ~ rs2) : rsi

Conditional bitwise-and, if zero
rd = (rc == 0) ? (rsl & rs2) : rsi

Conditional bitwise-and, if non-zero
rd = (rc !=0) ? (rs1 & rs2) : rsi

Conditional select, if zero
rd = (rc == 0) ? rsl : rs2

Conditional select, if non-zero
rd = (rc !=0) ? rsl : rs2

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Instruction sequence

czero.nez
add

czero.eqz
add

czero.nez
sub

czero.eqz
sub

czero.nez
or

czero.eqz
or

czero.nez
xor

czero.eqz
xor

and
czero.eqz
or

and
czero.nez
or

czero.nez
czero.eqz
or

czero.eqz
czero.nez
or

rd, rs2, rc
rd, rsl, rd
rd, rs2, rc
rd, rsl, rd
rd, rs2, rc
rd, rsl, rd
rd, rs2, rc
rd, rsl, rd
rd, rs2, rc
rd, rsl, rd
rd, rs2, rc
rd, rsl, rd
rd, rs2, rc
rd, rsl, rd
rd, rs2, rc
rd, rsl, rd
rd, rsl, rs2
rtmp, rsl, rc
rd, rd, rtmp
rd, rsl, rs2
rtmp, rsl, rc
rd, rd, rtmp
rd, rsl, rc
rtmp, rs2, rc
rd, rd, rtmp
rd, rsl, rc

rtmp, rs2, rc

rd, rd,

rtmp

Length

2 insns

3insns

(requires 1 temporary)

13.1. Multiplication Operations | Page 69

Chapter 13. "M" Extension for Integer Multiplication and
Division, Version 2.0

This chapter describes the standard integer multiplication and division instruction extension, which is
named "M" and contains instructions that multiply or divide values held in two integer registers.

We separate integer multiply and divide out from the base to simplify low-end
o implementations, or for applications where integer multiply and divide operations are
either infrequent or better handled in attached accelerators.

13.1. Multiplication Operations

31 25 24 20 19 15 14 12 1 7 6 o
funct7 rs2 rsi funct3 rd opcode
7 5 5 3 5 7
MULDIV multiplier multiplicand MUL/MULHI[[S]U] dest OP
MULDIV multiplier multiplicand MULW dest OP-32

MUL performs an XLEN-bitxXLEN-bit multiplication of rs7 by rs2 and places the lower XLEN bits in the
destination register. MULH, MULHU, and MULHSU perform the same multiplication but return the
upper XLEN bits of the full 2xXLEN-bit product, for signedxsigned, unsignedxunsigned, and
rs1xunsigned rs2 multiplication, respectively. If both the high and low bits of the same product are
required, then the recommended code sequence is: MULH[[S]U] rdh, rsT, rs2; MUL rdl, rs1, rs2 (source
register specifiers must be in same order and rdh cannot be the same as rs1 or rs2).
Microarchitectures can then fuse these into a single multiply operation instead of performing two
separate multiplies.

MULHSU is used in multi-word signed multiplication to multiply the most-significant
word of the multiplicand (which contains the sign bit) with the less-significant words
of the multiplier (which are unsigned).

MULW is an RV64 instruction that multiplies the lower 32 bits of the source registers, placing the sign
extension of the lower 32 bits of the result into the destination register.

In RV64, MUL can be used to obtain the upper 32 bits of the 64-bit product, but
signed arguments must be proper 32-bit signed values, whereas unsigned arguments

o must have their upper 32 bits clear. If the arguments are not known to be sign- or
zero-extended, an alternative is to shift both arguments left by 32 bits, then use
MULHI[[S]U].

13.2. Division Operations

31 25 24 20 19 15 14 12 11 7 6]
funct7 rs2 rsi funct3 rd opcode
7 5 5 3 5 7
MULDIV divisor dividend DIV[U]/REM[U] dest OP
MULDIV divisor dividend DIV[U]W/REM[UIW dest OP-32

DIV and DIVU perform an XLEN bits by XLEN bits signed and unsigned integer division of rs7 by rs2,

The RISC-V Instruction Set Manual Volume I | © RISC-V International

13.3. Zmmul Extension, Version 1.9 | Page 70

rounding towards zero. REM and REMU provide the remainder of the corresponding division operation.
For REM, the sign of a nonzero result equals the sign of the dividend.

o For both signed and unsigned division, except in the case of overflow, it holds that
dividend = divisor X quotient + remainder.

If both the quotient and remainder are required from the same division, the recommended code
sequence is: DIV[U] rdq, rs1, rs2; REM[U] rdr, rs1, rs2 (rdq cannot be the same as rs7 or rs2).
Microarchitectures can then fuse these into a single divide operation instead of performing two
separate divides.

DIVW and DIVUW are RV64 instructions that divide the lower 32 bits of rs7 by the lower 32 bits of rs2,
treating them as signed and unsigned integers respectively, placing the 32-bit quotient in rd, sign-
extended to 64 bits. REMW and REMUW are RV64 instructions that provide the corresponding signed
and unsigned remainder operations respectively. Both REMW and REMUW always sign-extend the 32-
bit result to 64 bits, including on a divide by zero.

The semantics for division by zero and division overflow are summarized in Table 12. The quotient of
division by zero has all bits set, and the remainder of division by zero equals the dividend. Signed
division overflow occurs only when the most-negative integer is divided by —1. The quotient of a signed
division with overflow is equal to the dividend, and the remainder is zero. Unsigned division overflow
cannot occur.

Table 12. Semantics for division by zero and division overflow. L is the width of the operation in bits: XLEN
for DIV[U] and REM[U], or 32 for DIV[U]W and REM[U]W.

Condition Dividend Divisor DIVU[W] REMU[W] DIV[W] REM[W]
Division by zero X 0 2L _q b'¢ -1 X
Overflow (signed only) _oL-1 -1 - - _oL-1)

We considered raising exceptions on integer divide by zero, with these exceptions
causing a trap in most execution environments. However, this would be the only
arithmetic trap in the standard ISA (floating-point exceptions set flags and write
default values, but do not cause traps) and would require language implementors to
interact with the execution environment’s trap handlers for this case. Further, where
language standards mandate that a divide-by-zero exception must cause an
immediate control flow change, only a single branch instruction needs to be added to
o each divide operation, and this branch instruction can be inserted after the divide
and should normally be very predictably not taken, adding little runtime overhead.

The value of all bits set is returned for both unsigned and signed divide by zero to
simplify the divider circuitry. The value of all 1s is both the natural value to return for
unsigned divide, representing the largest unsigned number, and also the natural
result for simple unsigned divider implementations. Signed division is often
implemented using an unsigned division circuit and specifying the same overflow
result simplifies the hardware.

13.3. Zmmul Extension, Version 1.0

The Zmmul extension implements the multiplication subset of the M extension. It adds all of the
instructions defined in Section 13.1, namely: MUL, MULH, MULHU, MULHSU, and (for RV64 only)
MULW. The encodings are identical to those of the corresponding M-extension instructions. M implies

The RISC-V Instruction Set Manual Volume I | © RISC-V International

13.3. Zmmul Extension, Version 1.9 | Page 71

Zmmul.

The Zmmul extension enables low-cost implementations that require multiplication
operations but not division. For many microcontroller applications, division
operations are too infrequent to justify the cost of divider hardware. By contrast,

o multiplication operations are more frequent, making the cost of multiplier hardware
more justifiable. Simple FPGA soft cores particularly benefit from eliminating division
but retaining multiplication, since many FPGAs provide hardwired multipliers but
require dividers be implemented in soft logic.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

14.1. Specifying Ordering of Atomic Instructions | Page 72

Chapter 14. "A" Extension for Atomic Instructions, Version 2.1

The atomic-instruction extension, named "A", contains instructions that atomically read-modify-write
memory to support synchronization between multiple RISC-V harts running in the same memory space.
The two forms of atomic instruction provided are load-reserved/store-conditional instructions and
atomic fetch-and-op memory instructions. Both types of atomic instruction support various memory
consistency orderings including unordered, acquire, release, and sequentially consistent semantics.
These instructions allow RISC-V to support the RCsc memory consistency model. (Gharachorloo et al.,
1990)

After much debate, the language community and architecture community appear to
o have finally settled on release consistency as the standard memory consistency
model and so the RISC-V atomic support is built around this model.

The A extension comprises instructions provided by the Zaamo and Zalrsc extensions.

14.1. Specifying Ordering of Atomic Instructions

The base RISC-V ISA has a relaxed memory model, with the FENCE instruction used to impose
additional ordering constraints. The address space is divided by the execution environment into
memory and I/0 domains, and the FENCE instruction provides options to order accesses to one or
both of these two address domains.

To provide more efficient support for release consistency (Gharachorloo et al, 1990), each atomic
instruction has two bits, aq and rl, used to specify additional memory ordering constraints as viewed by
other RISC-V harts. The bits order accesses to one of the two address domains, memory or 1/0,
depending on which address domain the atomic instruction is accessing. No ordering constraint is
implied to accesses to the other domain, and a FENCE instruction should be used to order across both
domains.

If both bits are clear, no additional ordering constraints are imposed on the atomic memory operation.
If only the aq bit is set, the atomic memory operation is treated as an acquire access, i.e., no following
memory operations on this RISC-V hart can be observed to take place before the acquire memory
operation. If only the rl bit is set, the atomic memory operation is treated as a release access, i.e., the
release memory operation cannot be observed to take place before any earlier memory operations on
this RISC-V hart. If both the aq and rl bits are set, the atomic memory operation is sequentially
consistent and cannot be observed to happen before any earlier memory operations or after any later
memory operations in the same RISC-V hart and to the same address domain.

14.2. "Zalrsc" Extension for Load-Reserved/Store-Conditional Instructions

31 27 26 25 24 20 19 15 14 12 1 7 6]
funct5 aq/| rl rs2 rsi funct3 rd opcode
5 1 1 5 5 3 5 7
LR.W/D ordering o addr width dest AMO
SC.W/D ordering src addr width dest AMO

Complex atomic memory operations on a single memory word or doubleword are performed with the
load-reserved (LR) and store-conditional (SC) instructions. LR.W loads a word from the address in rsf,
places the sign-extended value in rd, and registers a reservation set—a set of bytes that subsumes the
bytes in the addressed word. SC.W conditionally writes a word in rs2 to the address in rs7: the SC.W
succeeds only if the reservation is still valid and the reservation set contains the bytes being written. If

The RISC-V Instruction Set Manual Volume I | © RISC-V International

14.2. "Zalrsc" Extension for Load-Reserved/Store-Conditional Instructions | Page 73

the SC.W succeeds, the instruction writes the word in rs2 to memory, and it writes zero to rd. If the
SC.W fails, the instruction does not write to memory, and it writes a nonzero value to rd. For the
purposes of memory protection, a failed SC.W may be treated like a store. Regardless of success or
failure, executing an SC.W instruction invalidates any reservation held by this hart. LR.D and SC.D act
analogously on doublewords and are only available on RV64. For RV64, LR.W and SC.W sign-extend the
value placed in rd.

Both compare-and-swap (CAS) and LR/SC can be used to build lock-free data
structures. After extensive discussion, we opted for LR/SC for several reasons: 1) CAS
suffers from the ABA problem, which LR/SC avoids because it monitors all writes to
the address rather than only checking for changes in the data value; 2) CAS would
also require a new integer instruction format to support three source operands
(address, compare value, swap value) as well as a different memory system message
format, which would complicate microarchitectures; 3) Furthermore, to avoid the ABA
problem, other systems provide a double-wide CAS (DW-CAS) to allow a counter to
be tested and incremented along with a data word. This requires reading five
registers and writing two in one instruction, and also a new larger memory system
message type, further complicating implementations; 4) LR/SC provides a more
efficient implementation of many primitives as it only requires one load as opposed
to two with CAS (one load before the CAS instruction to obtain a value for speculative

o computation, then a second load as part of the CAS instruction to check if value is
unchanged before updating).

The main disadvantage of LR/SC over CAS is livelock, which we avoid, under certain
circumstances, with an architected guarantee of eventual forward progress as
described below. Another concern is whether the influence of the current x86
architecture, with its DW-CAS, will complicate porting of synchronization libraries and
other software that assumes DW-CAS is the basic machine primitive. A possible
mitigating factor is the recent addition of transactional memory instructions to x86,
which might cause a move away from DW-CAS.

More generally, a multi-word atomic primitive is desirable, but there is still
considerable debate about what form this should take, and guaranteeing forward
progress adds complexity to a system.

The failure code with value 1 encodes an unspecified failure. Other failure codes are reserved at this
time. Portable software should only assume the failure code will be non-zero.

We reserve a failure code of 1to mean "unspecified" so that simple implementations

o may return this value using the existing mux required for the SLT/SLTU instructions.
More specific failure codes might be defined in future versions or extensions to the
ISA.

For LR and SC, the Zalrsc extension requires that the address held in rs7 be naturally aligned to the
size of the operand (i.e., eight-byte aligned for doublewords and four-byte aligned for words). If the
address is not naturally aligned, an address-misaligned exception or an access-fault exception will be
generated. The access-fault exception can be generated for a memory access that would otherwise be
able to complete except for the misalignment, if the misaligned access should not be emulated.

Emulating misaligned LR/SC sequences is impractical in most systems.

e Misaligned LR/SC sequences also raise the possibility of accessing multiple

The RISC-V Instruction Set Manual Volume I | © RISC-V International

14.2. "Zalrsc" Extension for Load-Reserved/Store-Conditional Instructions | Page 74

reservation sets at once, which present definitions do not provide for.

An implementation can register an arbitrarily large reservation set on each LR, provided the
reservation set includes all bytes of the addressed data word or doubleword. An SC can only pair with
the most recent LR in program order. An SC may succeed only if no store from another hart to the
reservation set can be observed to have occurred between the LR and the SC, and if there is no other
SC between the LR and itself in program order. An SC may succeed only if no write from a device other
than a hart to the bytes accessed by the LR instruction can be observed to have occurred between the
LR and SC. Note this LR might have had a different effective address and data size, but reserved the
SC’s address as part of the reservation set.

Following this model, in systems with memory translation, an SC is allowed to
succeed if the earlier LR reserved the same location using an alias with a different
virtual address, but is also allowed to fail if the virtual address is different.

o To accommodate legacy devices and buses, writes from devices other than RISC-V
harts are only required to invalidate reservations when they overlap the bytes
accessed by the LR. These writes are not required to invalidate the reservation when
they access other bytes in the reservation set.

The SC must fail if the address is not within the reservation set of the most recent LR in program
order. The SC must fail if a store to the reservation set from another hart can be observed to occur
between the LR and SC. The SC must fail if a write from some other device to the bytes accessed by
the LR can be observed to occur between the LR and SC. (If such a device writes the reservation set
but does not write the bytes accessed by the LR, the SC may or may not fail.) An SC must fail if there is
another SC (to any address) between the LR and the SC in program order. The precise statement of
the atomicity requirements for successful LR/SC sequences is defined by the Atomicity Axiom in
Section 18.1.

The platform should provide a means to determine the size and shape of the
reservation set.

A platform specification may constrain the size and shape of the reservation set.

A store-conditional instruction to a scratch word of memory should be used to
forcibly invalidate any existing load reservation:

o ® during a preemptive context switch, and

® jf necessary when changing virtual to physical address mappings, such as when
migrating pages that might contain an active reservation.

The invalidation of a hart’s reservation when it executes an LR or SC imply that a hart
can only hold one reservation at a time, and that an SC can only pair with the most
recent LR, and LR with the next following SC, in program order. This is a restriction to
the Atomicity Axiom in Section 18.1 that ensures software runs correctly on expected
common implementations that operate in this manner.

An SC instruction can never be observed by another RISC-V hart before the LR instruction that
established the reservation.

The LR/SC sequence can be given acquire semantics by setting the aq bit on the LR
o instruction. The LR/SC sequence can be given release semantics by by setting the rl
bit on the SC instruction. Assuming suitable mappings for other atomic operations,

The RISC-V Instruction Set Manual Volume I | © RISC-V International

14.2. "Zalrsc" Extension for Load-Reserved/Store-Conditional Instructions | Page 75

setting the aq bit on the LR instruction, and setting the rl bit on the SC instruction
makes the LR/SC sequence sequentially consistent in the C++ memory_order_seq_cst
sense. Such a sequence does not act as a fence for ordering ordinary load and store
instructions before and after the sequence. Specific instruction mappings for other
C++ atomic operations, or stronger notions of "sequential consistency", may require
both bits to be set on either or both of the LR or SC instruction.

If neither bit is set on either LR or SC, the LR/SC sequence can be observed to occur
before or after surrounding memory operations from the same RISC-V hart. This can
be appropriate when the LR/SC sequence is used to implement a parallel reduction
operation.

Software should not set the rl bit on an LR instruction unless the aq bit is also set, nor should software
set the aq bit on an SC instruction unless the rl bit is also set. LR.rl and SC.aq instructions are not
guaranteed to provide any stronger ordering than those with both bits clear, but may result in lower
performance.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

14.3. Eventual Success of Store-Conditional Instructions | Page 76

a0 holds address of memory location

al holds expected value

a2 holds desired value

a0 holds return value, 0 if successful, !0 otherwise

cas:
r.w t0, (a0) # Load original value.
bne t0, al, fail # Doesn't match, so fail.
sc.w t0, a2, (ald) # Try to update.
bnez t0, cas # Retry if store-conditional failed.
1i a0, © # Set return to success.
jr ra # Return.
fail:
1i a0, 1 # Set return to failure.
jr ra # Return.

Listing 2. Sample code for compare-and-swap function using LR/SC.

LR/SC can be used to construct lock-free data structures. An example using LR/SC to implement a
compare-and-swap function is shown in Listing 2. If inlined, compare-and-swap functionality need only
take four instructions.

14.3. Eventual Success of Store-Conditional Instructions
The Zalrsc extension defines constrained LR/SC loops, which have the following properties:

® The loop comprises only an LR/SC sequence and code to retry the sequence in the case of failure,
and must comprise at most 16 instructions placed sequentially in memory.

® An LR/SC sequence begins with an LR instruction and ends with an SC instruction. The dynamic
code executed between the LR and SC instructions can only contain instructions from the base "I"
instruction set, excluding loads, stores, backward jumps, taken backward branches, JALR, FENCE,
and SYSTEM instructions. If the "C" extension is supported, then compressed forms of the
aforementioned "I" instructions are also permitted.

® The code to retry a failing LR/SC sequence can contain backwards jumps and/or branches to
repeat the LR/SC sequence, but otherwise has the same constraint as the code between the LR
and SC.

® The LR and SC addresses must lie within a memory region with the LR/SC eventuality property. The
execution environment is responsible for communicating which regions have this property.

® The SC must be to the same effective address and of the same data size as the latest LR executed
by the same hart.

LR/SC sequences that do not lie within constrained LR/SC loops are unconstrained. Unconstrained
LR/SC sequences might succeed on some attempts on some implementations, but might never
succeed on other implementations.

We restricted the length of LR/SC loops to fit within 64 contiguous instruction bytes
in the base ISA to avoid undue restrictions on instruction cache and TLB size and
o associativity. Similarly, we disallowed other loads and stores within the loops to avoid
restrictions on data-cache associativity in simple implementations that track the
reservation within a private cache. The restrictions on branches and jumps limit the

The RISC-V Instruction Set Manual Volume I | © RISC-V International

14.3. Eventual Success of Store-Conditional Instructions | Page 77

time that can be spent in the sequence. Floating-point operations and integer
multiply/divide were disallowed to simplify the operating system’s emulation of these
instructions on implementations lacking appropriate hardware support.

Software is not forbidden from using unconstrained LR/SC sequences, but portable
software must detect the case that the sequence repeatedly fails, then fall back to an
alternate code sequence that does not rely on an unconstrained LR/SC sequence.
Implementations are permitted to unconditionally fail any unconstrained LR/SC
sequence.

If a hart H enters a constrained LR/SC loop, the execution environment must guarantee that one of the
following events eventually occurs:

® [or some other hart executes a successful SC to the reservation set of the LR instruction in H's
constrained LR/SC loops.

® Some other hart executes an unconditional store or AMO instruction to the reservation set of the
LR instruction in H's constrained LR/SC loop, or some other device in the system writes to that
reservation set.

® H executes a branch or jump that exits the constrained LR/SC loop.

® [traps.

Note that these definitions permit an implementation to fail an SC instruction
occasionally for any reason, provided the aforementioned guarantee is not violated.

As a consequence of the eventuality guarantee, if some harts in an execution
environment are executing constrained LR/SC loops, and no other harts or devices in
the execution environment execute an unconditional store or AMO to that reservation
set, then at least one hart will eventually exit its constrained LR/SC loop. By contrast,
if other harts or devices continue to write to that reservation set, it is not guaranteed
that any hart will exit its LR/SC loop.

Loads and load-reserved instructions do not by themselves impede the progress of
other harts' LR/SC sequences. We note this constraint implies, among other things,
that loads and load-reserved instructions executed by other harts (possibly within the
same core) cannot impede LR/SC progress indefinitely. For example, cache evictions
caused by another hart sharing the cache cannot impede LR/SC progress indefinitely.

6 Typically, this implies reservations are tracked independently of evictions from any
shared cache. Similarly, cache misses caused by speculative execution within a hart
cannot impede LR/SC progress indefinitely.

These definitions admit the possibility that SC instructions may spuriously fail for
implementation reasons, provided progress is eventually made.

One advantage of CAS is that it guarantees that some hart eventually makes
progress, whereas an LR/SC atomic sequence could livelock indefinitely on some
systems. To avoid this concern, we added an architectural guarantee of livelock
freedom for certain LR/SC sequences.

Earlier versions of this specification imposed a stronger starvation-freedom
guarantee. However, the weaker livelock-freedom guarantee 1is sufficient to
implement the C11 and C++11 languages, and is substantially easier to provide in

The RISC-V Instruction Set Manual Volume I | © RISC-V International

14.4. "Zaamo" Extension for Atomic Memory Operations | Page 78

some microarchitectural styles.

14.4. "Zaamo" Extension for Atomic Memory Operations

31 27 26 25 24 20 19 15 14 122 11 7 6]

funct5 aq/| rl rs2 rsi funct3 rd opcode
5 11 5 5 3 5 7

AMOSWAP.W/D src addr width dest AMO
AMOADD.W/D src addr width dest AMO
AMOAND.W/D src addr width dest AMO
AMOOR.W/D src addr width dest AMO
AMOXOR.W/D src addr width dest AMO
AMOMAX[U].W/D src addr width dest AMO
AMOMIN[U].W/D src addr width dest AMO

The atomic memory operation (AMO) instructions perform read-modify-write operations for
multiprocessor synchronization and are encoded with an R-type instruction format. These AMO
instructions atomically load a data value from the address in rs7, place the value into register rd, apply
a binary operator to the loaded value and the original value in rs2, then store the result back to the
original address in rs1. AMOs can either operate on doublewords (RV64 only) or words in memory. For
RV64, 32-bit AMOs always sign-extend the value placed in rd, and ignore the upper 32 bits of the
original value of rs2.

For AMOs, the Zaamo extension requires that the address held in rs7 be naturally aligned to the size of
the operand (i.e., eight-byte aligned for doublewords and four-byte aligned for words). If the address is
not naturally aligned, an address-misaligned exception or an access-fault exception will be generated.
The access-fault exception can be generated for a memory access that would otherwise be able to
complete except for the misalignment, if the misaligned access should not be emulated.

The misaligned atomicity granule PMA, defined in Volume II of this manual, optionally relaxes this
alignment requirement. If present, the misaligned atomicity granule PMA specifies the size of a
misaligned atomicity granule, a power-of-two number of bytes. The misaligned atomicity granule PMA
applies only to AMOs, loads and stores defined in the base ISAs, and loads and stores of no more than
XLEN bits defined in the F, D, and Q extensions. For an instruction in that set, if all accessed bytes lie
within the same misaligned atomicity granule, the instruction will not raise an exception for reasons of
address alignment, and the instruction will give rise to only one memory operation for the purposes of
RVWMO—i.e,, it will execute atomically.

The operations supported are swap, integer add, bitwise AND, bitwise OR, bitwise XOR, and signed and
unsigned integer maximum and minimum. Without ordering constraints, these AMOs can be used to
implement parallel reduction operations, where typically the return value would be discarded by writing
to xo.

We provided fetch-and-op style atomic primitives as they scale to highly parallel
systems better than LR/SC or CAS. A simple microarchitecture can implement AMOs
using the LR/SC primitives, provided the implementation can guarantee the AMO
eventually completes. More complex implementations might also implement AMOs
at memory controllers, and can optimize away fetching the original value when the

o destination is xe.

The set of AMOs was chosen to support the C11/C++11 atomic memory operations
efficiently, and also to support parallel reductions in memory. Another use of AMOs is
to provide atomic updates to memory-mapped device registers (e.g., setting, clearing,
or toggling bits) in the I/0 space.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

14.4."Zaamo" Extension for Atomic Memory Operations | Page 79

The Zaamo extension enables microcontroller class implementations to utilize
atomic primitives from the AMO subset of the A extension. Typically such
implementations do not have caches and thus may not be able to naturally support
the LR/SC instructions provided by the Zalrsc extension.

To help implement multiprocessor synchronization, the AMOs optionally provide release consistency
semantics. If the aq bit is set, then no later memory operations in this RISC-V hart can be observed to
take place before the AMO. Conversely, if the rl bit is set, then other RISC-V harts will not observe the
AMO before memory accesses preceding the AMO in this RISC-V hart. Setting both the aq and the rl
bit on an AMO makes the sequence sequentially consistent, meaning that it cannot be reordered with
earlier or later memory operations from the same hart.

The AMOs were designed to implement the C11 and C++11 memory models
6 efficiently. Although the FENCE R, RW instruction suffices to implement the acquire

operation and FENCE RW, W suffices to implement release, both imply additional

unnecessary ordering as compared to AMOs with the corresponding aq or rl bit set.

An example code sequence for a critical section guarded by a test-and-test-and-set spinlock is shown
in Example Listing 3. Note the first AMO is marked aq to order the lock acquisition before the critical
section, and the second AMO is marked rl to order the critical section before the lock relinquishment.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

14.4. "Zaamo" Extension for Atomic Memory Operations | Page 80

1i to, 1 # Initialize swap value.
again:

w t1, (a0) # Check if lock is held.

bnez t1, again # Retry if held.

amoswap.w.aq t1, t0, (a0) # Attempt to acquire lock.

bnez t1, again # Retry if held.

...

Critical section.

...

amoswap.w.rl x0, x0, (aB) # Release lock by storing 0.

Listing 3. Sample code for mutual exclusion. a® contains the address of the lock.

We recommend the use of the AMO Swap idiom shown above for both lock acquire
and release to simplify the implementation of speculative lock elision. (Rajwar &
Goodman, 2001)

The instructions in the "A" extension can be used to provide sequentially consistent
loads and stores, but this constrains hardware reordering of memory accesses more
than necessary. A C++ sequentially consistent load can be implemented as an LR
with aq set. However, the LR/SC eventual success guarantee may slow down
concurrent loads from the same effective address. A sequentially consistent store
can be implemented as an AMOSWAP that writes the old value to x0 and has rl set.
However the superfluous load may impose ordering constraints that are unnecessary
for this use case. Specific compilation conventions may require both the aq and rl
bits to be set in either or both the LR and AMOSWAP instructions.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

15.1. Wait-on-Reservation-Set Instructions | Page 81

Chapter 15. "Zawrs" Extension for Wait-on-Reservation-Set
instructions, Version 1.01

The Zawrs extension defines a pair of instructions to be used in polling loops that allows a core to
enter a low-power state and wait on a store to a memory location. Waiting for a memory location to be
updated is a common pattern in many use cases such as:

1. Contenders for a lock waiting for the lock variable to be updated.

2. Consumers waiting on the tail of an empty queue for the producer to queue work/data. The
producer may be code executing on a RISC-V hart, an accelerator device, an external I/0 agent.

3. Code waiting on a flag to be set in memory indicative of an event occurring. For example, software
on a RISC-V hart may wait on a "done" flag to be set in memory by an accelerator device indicating
completion of a job previously submitted to the device.

Such use cases involve polling on memory locations, and such busy loops can be a wasteful
expenditure of energy. To mitigate the wasteful looping in such usages, a WRS.NTO (WRS-with-no-
timeout) instruction is provided. Instead of polling for a store to a specific memory location, software
registers a reservation set that includes all the bytes of the memory location using the LR instruction.
Then a subsequent WRS.NTO instruction would cause the hart to temporarily stall execution in a low-
power state until a store occurs to the reservation set or an interrupt is observed.

Sometimes the program waiting on a memory update may also need to carry out a task at a future time
or otherwise place an upper bound on the wait. To support such use cases a second instruction WRs.ST0
(WRS-with-short-timeout) is provided that works like WRs.NTO but bounds the stall duration to an
implementation-define short timeout such that the stall is terminated on the timeout if no other
conditions have occurred to terminate the stall. The program using this instruction may then determine
if its deadline has been reached.

o The instructions in the Zawrs extension are only useful in conjunction with the LR
instruction, which is provided by the Zalrsc component of the A extension.

15.1. Wait-on-Reservation-Set Instructions

The WRS.NTO and WRS.STO instructions cause the hart to temporarily stall execution in a low-power state
as long as the reservation set is valid and no pending interrupts, even if disabled, are observed. For
WRS.STO the stall duration is bounded by an implementation defined short timeout. These instructions
are available in all privilege modes.

31 20 19 15 14 12 1 7 6]
funct12 rsi funct3 rd opcode
WRS.NTO(0x8d)] o 0 SYSTEM(Ox73)
WRS.STO(0x1d)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

15.1. Wait-on-Reservation-Set Instructions | Page 82
Hart execution may be stalled while the following conditions are all satisfied:

a. The reservation set is valid
b. If wrRs.sT0, a "short" duration since start of stall has not elapsed

c. No pending interrupt is observed (see the rules below)

While stalled, an implementation is permitted to occasionally terminate the stall and complete
execution for any reason.

WRS.NTO and WRsS.STO instructions follow the rules of the WwrI instruction for resuming execution on a
pending interrupt.

When the ™w (Timeout Wait) bit in mstatus is set and WRS.NTO is executed in any privilege mode other
than M mode, and it does not complete within an implementation-specific bounded time limit, the
WRS.NTO instruction will cause an illegal instruction exception.

When executing in VS or VU mode, if the vTw bit is set in hstatus, the Tw bit in mstatus is clear, and the
WRS.NTO does not complete within an implementation-specific bounded time limit, the WRS.NTO
instruction will cause a virtual instruction exception.

Since the WRS.ST0 and WRS.NTO instructions can complete execution for reasons other
than stores to the reservation set, software will likely need a means of looping until
the required stores have occurred.

The duration of a WRS.STO instruction’s timeout may vary significantly within and
among implementations. In typical implementations this duration should be roughly

o in the range of 10 to 1090 times an on-chip cache miss latency or a cacheless access
to main memory.

WRS.NTO, unlike WFI, is not specified to cause an illegal instruction exception if
executed in U-mode when the governing Tw bit is 0. WFI js typically not expected to be
used in U-mode and on many systems may promptly cause an illegal instruction
exception if used at U-mode. Unlike WFI, WRS.NTO is expected to be used by software in
U-mode when waiting on memory but without a deadline for that wait.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

16.1. Word/Doubleword/Quadword CAS (AMOCAS.W/D/Q) Instructions | Page 83

Chapter 16. "Zacas" Extension for Atomic Compare-and-Swap
(CAS) Instructions, Version 1.0.0

Compare-and-Swap (CAS) provides an easy and typically faster way to perform thread synchronization
operations when supported as a hardware instruction. CAS is typically used by lock-free and wait-free
algorithms. This extension proposes CAS instructions to operate on 32-bit, 64-bit, and 128-bit (RV64
only) data values. The CAS instruction supports the C++11 atomic compare and exchange operation.

While compare-and-swap for XLEN wide data may be accomplished using LR/SC, the CAS atomic
instructions scale better to highly parallel systems than LR/SC. Many lock-free algorithms, such as a
lock-free queue, require manipulation of pointer variables. A simple CAS operation may not be
sufficient to guard against what is commonly referred to as the ABA problem in such algorithms that
manipulate pointer variables. To avoid the ABA problem, the algorithms associate a reference counter
with the pointer variable and perform updates using a quadword compare and swap (of both the
pointer and the counter). The double and quadword CAS instructions support implementation of
algorithms for ABA problem avoidance.

The Zacas extension depends upon the Zaamo extension.

16.1. Word/Doubleword/Quadword CAS (AMOCAS.W/D/Q) Instructions

31 27 26 25 24 20 19 15 14 12 1 7 6 N
| 00101 | aq | rl rs2 | rsi | funct3 | rd | opcode
AMOCAS.W src addr 010 dest AMO
AMOCAS.D 011
AMOCAS.Q 100

For RV32, amocas.w atomically loads a 32-bit data value from address in rs1, compares the loaded value
to the 32-bit value held in rd, and if the comparison is bitwise equal, then stores the 32-bit value held
in rs2 to the original address in rsi. The value loaded from memory is placed into register rd. The
operation performed by amocas.w for RV32 is as follows:

temp = mem[X(rs1)]

if (temp == X(rd))
mem[X(rs1)] = X(rs2)

X(rd) = temp

AMOCAS.D is similar to AMOCAS.w but operates on 64-bit data values.

For RV32, amocAs.D atomically loads 64-bits of a data value from address in rs1, compares the loaded
value to a 64-bit value held in a register pair consisting of rd and rd+1, and if the comparison is bitwise
equal, then stores the 64-bit value held in the register pair rs2 and rs2+1 to the original address in rsi.
The value loaded from memory is placed into the register pair rd and rd+1. The instruction requires the
first register in the pair to be even numbered; encodings with odd numbered registers specified in rs2
and rd are reserved. When the first register of a source register pair is xo, then both halves of the pair
read as zero. When the first register of a destination register pair is x0, then the entire register result is
discarded and neither destination register is written. The operation performed by aMocas.p for RV32 is
as follows:

The RISC-V Instruction Set Manual Volume I | © RISC-V International

16.1. Word/Doubleword/Quadword CAS (AMOCAS.W/D/Q) Instructions | Page 84

tempO® = mem[X(rs1)+0]
templ = mem[X(rsl)+4]
compd = (rd == x08) ? 0 : X(rd)
compl = (rd == x0) ? 0 : X(rd+1)
swap0 = (rs2 == x0) ? 0 : X(rs2)
swapl = (rs2 == x0) ? 0 : X(rs2+1)
if (temp® == compB®) && (templ == compl)
mem[X(rs1)+0] = swapO0
mem[X(rs1)+4] = swapl
endif
if (rd 1= x0)
X(rd) = tempod
X(rd+1) = templ
endif

For RV64, amocas.w atomically loads a 32-bit data value from address in rs1, compares the loaded value
to the lower 32 bits of the value held in rd, and if the comparison is bitwise equal, then stores the lower
32 bits of the value held in rs2 to the original address in rsi1. The 32-bit value loaded from memory is
sign-extended and is placed into register rd. The operation performed by AMocAs.w for RV64 is as
follows:

temp[31:0] = mem[X(rs1)]

if (temp[31:0] == X(rd)[31:0])
mem[X(rs1)] = X(rs2)[31:0]

X(rd) = SignExtend(temp[31:0])

For RV64, amocAs.D atomically loads 64-bits of a data value from address in rs1, compares the loaded
value to a 64-bit value held in rd, and if the comparison is bitwise equal, then stores the 64-bit value
held in rs2 to the original address in rs1. The value loaded from memory is placed into register rd. The
operation performed by AmMocas.D for RV64 is as follows:

temp = mem[X(rs1)]

if (temp == X(rd))
mem[X(rs1)] = X(rs2)

X(rd) = temp

AMOCAS.Q (RV64 only) atomically loads 128-bits of a data value from address in rs1, compares the loaded
value to a 128-bit value held in a register pair consisting of rd and rd+1, and if the comparison is
bitwise equal, then stores the 128-bit value held in the register pair rs2 and rs2+1 to the original
address in rsi1. The value loaded from memory is placed into the register pair rd and rd+1. The
instruction requires the first register in the pair to be even numbered; encodings with odd numbered
registers specified in rs2 and rd are reserved. When the first register of a source register pair is xo,
then both halves of the pair read as zero. When the first register of a destination register pair is xg,
then the entire register result is discarded and neither destination register is written. The operation
performed by AMOCAS.Q is as follows:

The RISC-V Instruction Set Manual Volume I | © RISC-V International

16.1. Word/Doubleword/Quadword CAS (AMOCAS.W/D/Q) Instructions | Page 85

tempO® = mem[X(rs1)+0]

templ = mem[X(rs1)+8]

compd = (rd == x08) ? 0 : X(rd)

compl = (rd == x0) ? 0 : X(rd+1)

swap0 = (rs2 == x0) ? 0 : X(rs2)

swapl = (rs2 == x0) ? 0 : X(rs2+1)

if (temp® == compB®) && (templ == compl)
mem[X(rs1)+0] = swapO0
mem[X(rs1)+8] = swapl

endif

if (rd 1= x0)
X(rd) = tempod
X(rd+1) = templ

endif

o For a future RV128 extension, AMOCAS.Q would encode a single XLEN=128 register in
rs2 and rd.

Some algorithms may load the previous data value of a memory location into the
register used as the compare data value source by a Zacas instruction. When using a
Zacas instruction that uses a register pair to source the compare value, the two
registers may be loaded using two individual loads. The two individual loads may read
an inconsistent pair of values but that is not an issue since the AMOCAS operation itself
uses an atomic load-pair from memory to obtain the data value for its comparison.

The following example code sequence illustrates the use of AMOCAS.D in a RV32
implementation to atomically increment a 64-bit counter.

a0 - address of the counter.

increment:
o w a2, (ab) # Load current counter value using
w a3, 4(a0) # two individual loads.
retry:
mv a6, a2 # Save the low 32 bits of the current valuve.
mv a7, a3 # Save the high 32 bits of the current
value.
addi a4, a2, 1 # Increment the low 32 bits.
sltu al, a4, a2 # Determine if there is a carry out.

add a5, a3, al # Add the carry if any to high 32 bits.
amocas.d.aqrl a2, a4, (aB)

bne a2, a6, retry # If amocas.d failed then retry

bne a3, a7, retry # using current values loaded by amocas.d.
ret

Just as for AMOs in the A extension, AMOCAS.W/D/Q requires that the address held in rs1 be naturally
aligned to the size of the operand (i.e., 16-byte aligned for quadwords, eight-byte aligned for
doublewords, and four-byte aligned for words). And the same exception options apply if the address is
not naturally aligned.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

16.1. Word/Doubleword/Quadword CAS (AMOCAS.W/D/Q) Instructions | Page 86

Just as for AMOs in the A extension, the AMOCAS.W/D/Q optionally provide release consistency semantics,
using the ag and r1 bits, to help implement multiprocessor synchronization. The memory operation
performed by an AMoCcAS.w/D/q, when successful, has acquire semantics if aq bit is 1 and has release
semantics if r1 bit is 1. The memory operation performed by an AM0CAS.W/D/Q, when not successful, has
acquire semantics if aq bit is 1 but does not have release semantics, regardless of ri.

A FENCE instruction may be used to order the memory read access and, if produced, the memory write
access by an AMOCAS.W/D/Q instruction.

An unsuccessful AMOCAS.W/D/Q may either not perform a memory write or may write
e back the old value loaded from memory. The memory write, if produced, does not
have release semantics, regardless of rl.

An AMOCAS.W/D/Q instruction always requires write permissions.

The following example code sequence illustrates the use of AMOCAS.Q to implement
the enqueue operation for a non-blocking concurrent queue using the algorithm
outlined in (Michael & Scott, 1996). The algorithm atomically operates on a pointer
and its associated modification counter using the AMOCAS.Q instruction to avoid the
ABA problem.

Enqueue operation of a non-blocking concurrent queue.

Data structures used by the queve:

structure pointer_t {ptr: node_t *, count: uinté4_t}
structure node_t {next: pointer_t, value: data type}
structure queve_t {Head: pointer_t, Tail: pointer_t}
Inputs to the procedure:

a0 - address of Tail variable

a4 - address of a new node to insert at tail

enqueve:

1d a6, (aB) # a6 = Tail.ptr

1id a7, 8(aB) # a7 = Tail.count

d a2, (aé) # a2 = Tail.ptr->next.ptr
0 ld a3, 8(ab) # a3 = Tail.ptr->next.count

1d t1, (aB)
1d t2, 8(ad)
bne a6, tl1, enqueue # Retry if Tail & next are not

consistent
bne a7, t2, enqueue # Retry if Tail & next are not
consistent
bne a2, x0, move_tail # Was tail pointing to the last node?
mv tl, a2 # Save Tail.ptr->next.ptr
mv t2, a3 # Save Tail.ptr->next.count
addi a5, a3, 1 # Link the node at the end of the list

amocas.q.aqrl a2, a4, (aé)
bne a2, tl1, enqueue # Retry if CAS failed
bne a3, t2, enqueue # Retry if CAS failed

addi a5, a7, 1 # Update Tail to the inserted node
amocas.q.aqrl aé, a4, (aB)
ret # Enqueue done

move_tail: # Tail was not pointing to the last node

The RISC-V Instruction Set Manual Volume I | © RISC-V International

16.1. Word/Doubleword/Quadword CAS (AMOCAS.W/D/Q) Instructions | Page 87

addi a3, a7, 1 # Try to swing Tail to the next node
amocas.q.aqrl a6, a2, (aB)
J enqueue # Retry

The RISC-V Instruction Set Manual Volume I | © RISC-V International

16.2. Additional AMO PMAs | Page 88

16.2. Additional AMO PMAs

There are four levels of PMA support defined for AMOs in the A extension. Zacas defines three
additional levels of support: AMOCASW, AMOCASD, and AMOCASQ.

AMOCASW indicates that in addition to instructions indicated by AMOArithmetic level support, the AMOCAS.W
instruction is supported. AMocASD indicates that in addition to instructions indicated by amocasw level
support, the aMocAS.D instruction is supported. AMOCASQ indicates that in addition to instructions
indicated by AMocAsD level support, the AMOCAS.Q instruction is supported.

e AMOCASW/D/Q require AMOArithmetic level support as the AMOCAS.W/D/Q instructions require
ability to perform an arithmetic comparison and a swap operation.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

17.1. Byte and Halfword Atomic Memory Operation Instructions | Page 89

Chapter 17. "Zabha" Extension for Byte and Halfword Atomic
Memory Operations, Version 1.0

The A-extension offers atomic memory operation (AMO) instructions for words, doublewords, and
quadwords (only for AMocAs). The absence of atomic operations for subword data types necessitates
emulation strategies. For bitwise operations, this emulation can be performed via word-sized bitwise
AMO* instructions. For non-bitwise operations, emulation is achievable using word-sized LR/SC
instructions.

Several limitations arise from this emulation approach:

1. In systems with large-scale or Non-Uniform Memory Access (NUMA) configurations, emulation
based on LR/sc introduces issues related to scalability and fairness, particularly under conditions of
high contention.

2. Emulation of narrower AMOs through wider AMO* instructions on non-idempotent I0 memory
regions may result in unintended side effects.

3. Utilizing wider AMO* instructions for emulating narrower AMOs risks activating extraneous
breakpoints or watchpoints.

4. In the absence of native support for subword atomics, compilers often resort to inlining code
sequences to provide the required emulation. This practice contributes to an increase in code size,
with consequent impacts on system performance and memory utilization.

The Zabha extension addresses these limitations by adding support for byte and halfword atomic
memory operations to the RISC-V Unprivileged ISA. The Zabha extension depends upon the Zaamo
standard extension.

17.1. Byte and Halfword Atomic Memory Operation Instructions

Zabha extension provides the AMO[ADD|AND|OR|XOR|SWAP|MIN[UIIMAX[U]].[BIH] instructions. If Zacas
extension is also implemented, Zabha further provides the AMOCAS. [BIH] instructions.

31 27 26 25 24 20 19 15 14 12 N1 7 6 o

functs |aq| rl | rs2 rsi funct3 rd opcode
AMOSWAP.B/H ordering src addr width=0/1 dest AMO
AMOADD.B/H ordering src addr width=0/1 dest AMO
AMOAND.B/H ordering src addr width=0/1 dest AMO
AMOOR.B/H ordering src addr width=0/1 dest AMO
AMOXOR.B/H ordering src addr width=0/1 dest AMO
AMOMAX[U].B/H ordering src addr width=0/1 dest AMO
AMOMIN[U].B/H ordering src addr width=0/1 dest AMO
AMOCAS.B/H ordering src addr width=0/1 dest AMO

Byte and halfword AMOs always sign-extend the value placed in rd, and ignore the
XLEN —1:2width +3) bits of the original value in rs2. The AMOCAS. [BIH] instructions similarly ignore the
XLEN —1:2width +3) bits of the original value in rd.

Similar to the AMOs specified in the A extension, the Zabha extension mandates that the address
contained in the rsi register must be naturally aligned to the size of the operand. The same exception
options as specified in the A extension are applicable in cases where the address is not naturally
aligned.

Similar to the AMOs specified in the A and Zacas extensions, the AMOs in the Zabha extension
optionally provide release consistency semantics, using the ag and r1 bits, to help implement
multiprocessor synchronization.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

17.1. Byte and Halfword Atomic Memory Operation Instructions | Page 90

o Zabha omits byte and halfword support for LR and sc due to low utility.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

18.1. Definition of the RVWMO Memory Model | Page 91

Chapter 18. RVWMO Memory Consistency Model, Version 2.0

This chapter defines the RISC-V memory consistency model. A memory consistency model is a set of
rules specifying the values that can be returned by loads of memory. RISC-V uses a memory model
called "RVWMO" (RISC-V Weak Memory Ordering) which is designed to provide flexibility for architects
to build high-performance scalable designs while simultaneously supporting a tractable programming
model.

Under RVWMO, code running on a single hart appears to execute in order from the perspective of
other memory instructions in the same hart, but memory instructions from another hart may observe
the memory instructions from the first hart being executed in a different order. Therefore,
multithreaded code may require explicit synchronization to guarantee ordering between memory
instructions from different harts. The base RISC-V ISA provides a FENCE instruction for this purpose,
described in Section 2.7, while the atomics extension "A" additionally defines load-reserved/store-
conditional and atomic read-modify-write instructions.

The standard ISA extension for total store ordering "Ztso" (Chapter 19) augments RVWMO with
additional rules specific to those extensions.

The appendices to this specification provide both axiomatic and operational formalizations of the
memory consistency model as well as additional explanatory material.

This chapter defines the memory model for reqular main memory operations. The

interaction of the memory model with I/0 memory, instruction fetches, FENCE.I,

page table walks, and SFENCE.VMA is not (yet) formalized. Some or all of the above

may be formalized in a future revision of this specification. The RV128 base ISA and

future ISA extensions such as the V vector and J JIT extensions will need to be
o incorporated into a future revision as well.

Memory consistency models supporting overlapping memory accesses of different
widths simultaneously remain an active area of academic research and are not yet
fully understood. The specifics of how memory accesses of different sizes interact
under RVWMO are specified to the best of our current abilities, but they are subject
to revision should new issues be uncovered.

18.1. Definition of the RVWMO Memory Model

The RVWMO memory model is defined in terms of the global memory order, a total ordering of the
memory operations produced by all harts. In general, a multithreaded program has many different
possible executions, with each execution having its own corresponding global memory order.

The global memory order is defined over the primitive load and store operations generated by memory
instructions. It is then subject to the constraints defined in the rest of this chapter. Any execution
satisfying all of the memory model constraints is a legal execution (as far as the memory model is
concerned).

18.1.1. Memory Model Primitives

The program order over memory operations reflects the order in which the instructions that generate
each load and store are logically laid out in that hart’'s dynamic instruction stream; i.e., the order in
which a simple in-order processor would execute the instructions of that hart.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

18.1. Definition of the RVWMO Memory Model | Page 92

Memory-accessing instructions give rise to memory operations. A memory operation can be either a
load operation, a store operation, or both simultaneously. All memory operations are single-copy
atomic: they can never be observed in a partially complete state.

Among instructions in RV32GC and RV64GC, each aligned memory instruction gives rise to exactly
one memory operation, with two exceptions. First, an unsuccessful SC instruction does not give rise to
any memory operations. Second, FLD and FSD instructions may each give rise to multiple memory
operations if XLEN<64, as stated in Section 22.3 and clarified below. An aligned AMO gives rise to a
single memory operation that is both a load operation and a store operation simultaneously.

Instructions in the RV128 base instruction set and in future ISA extensions such as V
o (vector) and P (SIMD) may give rise to multiple memory operations. However, the
memory model for these extensions has not yet been formalized.

A misaligned load or store instruction may be decomposed into a set of component memory
operations of any granularity. An FLD or FSD instruction for which XLEN<64 may also be decomposed
into a set of component memory operations of any granularity. The memory operations generated by
such instructions are not ordered with respect to each other in program order, but they are ordered
normally with respect to the memory operations generated by preceding and subsequent instructions
in program order. The atomics extension "A" does not require execution environments to support
misaligned atomic instructions at all. However, if misaligned atomics are supported via the misaligned
atomicity granule PMA, then AMOs within an atomicity granule are not decomposed, nor are loads and
stores defined in the base ISAs, nor are loads and stores of no more than XLEN bits defined in the F,
D, and Q extensions.

The decomposition of misaligned memory operations down to byte granularity

o facilitates emulation on implementations that do not natively support misaligned
accesses. Such implementations might, for example, simply iterate over the bytes of
a misaligned access one by one.

An LR instruction and an SC instruction are said to be paired if the LR precedes the SC in program
order and if there are no other LR or SC instructions in between; the corresponding memory operations
are said to be paired as well (except in case of a failed SC, where no store operation is generated). The
complete list of conditions determining whether an SC must succeed, may succeed, or must fail is
defined in Section 14.2.

Load and store operations may also carry one or more ordering annotations from the following set:
"acquire-RCpc", "acquire-RCsc", "release-RCpc", and "release-RCsc". An AMO or LR instruction with aq
set has an "acquire-RCsc" annotation. An AMO or SC instruction with rl set has a "release-RCsc"
annotation. An AMO, LR, or SC instruction with both aq and rl set has both "acquire-RCsc" and

"release-RCsc" annotations.

For convenience, we use the term "acquire annotation" to refer to an acquire-RCpc annotation or an
acquire-RCsc annotation. Likewise, a "release annotation" refers to a release-RCpc annotation or a
release-RCsc annotation. An "RCpc annotation" refers to an acquire-RCpc annotation or a release-
RCpc annotation. An RCsc annotation refers to an acquire-RCsc annotation or a release-RCsc
annotation.

In the memory model literature, the term "RCpc" stands for release consistency with
processor-consistent synchronization operations, and the term "RCsc" stands for
o release consistency with sequentially consistent synchronization operations.

While there are many different definitions for acquire and release annotations in the

The RISC-V Instruction Set Manual Volume I | © RISC-V International

18.1. Definition of the RVWMO Memory Model | Page 93

literature, in the context of RVWMO these terms are concisely and completely
defined by Preserved Program Order rules 5-7.

"RCpc" annotations are currently only used when implicitly assigned to every memory
access per the standard extension "Ztso" (Chapter 19). Furthermore, although the ISA
does not currently contain native load-acquire or store-release instructions, nor RCpc
variants thereof, the RVWMO model itself is designed to be forwards-compatible with
the potential addition of any or all of the above into the ISA in a future extension.

18.1.2. Syntactic Dependencies

The definition of the RVWMO memory model depends in part on the notion of a syntactic dependency,
defined as follows.

In the context of defining dependencies, a register refers either to an entire general-purpose register,
some portion of a CSR, or an entire CSR. The granularity at which dependencies are tracked through
CSRs is specific to each CSR and is defined in Section 18.2.

Syntactic dependencies are defined in terms of instructions' source registers, instructions' destination
registers, and the way instructions carry a dependency from their source registers to their destination
registers. This section provides a general definition of all of these terms; however, Section 18.3
provides a complete listing of the specifics for each instruction.

In general, a register r other than xe is a source register for an instruction i if any of the following hold:

® Tn the opcode of 7, rs7,rs2, or rs3 is setto r

® jis a CSR instruction, and in the opcode of i, csr is set to r, unless 7 is CSRRW or CSRRWI and rd is
set to x@

® ris a CSR and an implicit source register for 7, as defined in Section 18.3
® ris a CSR that aliases with another source register for i

Memory instructions also further specify which source registers are address source registers and
which are data source registers.

In general, a register r other than xe is a destination register for an instruction i if any of the following
hold:

® In the opcode of i, rd is set to r

® jis a CSR instruction, and in the opcode of 7, csr is set to r, unless i is CSRRS or CSRRC and rs7 is
set to x0 or 7 is CSRRSI or CSRRCI and uimm[4:0] is set to zero.

® ris a CSR and an implicit destination register for i, as defined in Section 18.3

® ris a CSR that aliases with another destination register for i

Most non-memory instructions carry a dependency from each of their source registers to each of their
destination registers. However, there are exceptions to this rule; see Section 18.3.

Instruction j has a syntactic dependency on instruction i via destination register s of i and source
register r of j if either of the following hold:

® s is the same as r, and no instruction program-ordered between i and j has r as a destination

The RISC-V Instruction Set Manual Volume I | © RISC-V International

18.1. Definition of the RVWMO Memory Model | Page 94

register
® There is an instruction m program-ordered between i and j such that all of the following hold:
1. j has a syntactic dependency on m via destination register q and source register r
2. m has a syntactic dependency on i via destination register s and source register p
3. m carries a dependency from p to q

Finally, in the definitions that follow, let a and b be two memory operations, and let i and j be the
instructions that generate a and b, respectively.

b has a syntactic address dependency on a if r is an address source register for j and j has a syntactic
dependency on i via source register r

b has a syntactic data dependency on a if b is a store operation, r is a data source register for j, and j
has a syntactic dependency on i via source register r

b has a syntactic control dependency on a if there is an instruction m program-ordered between i and j
such that m is a branch or indirect jump and m has a syntactic dependency on i.

Generally speaking, non-AMO load instructions do not have data source registers,
and unconditional non-AMO store instructions do not have destination registers.

o However, a successful SC instruction is considered to have the register specified in
rd as a destination register, and hence it is possible for an instruction to have a
syntactic dependency on a successful SC instruction that precedes it in program
order.

18.1.3. Preserved Program Order

The global memory order for any given execution of a program respects some but not all of each hart’s
program order. The subset of program order that must be respected by the global memory order is
known as preserved program order.

The complete definition of preserved program order is as follows (and note that AMOs are
simultaneously both loads and stores): memory operation a precedes memory operation b in preserved
program order (and hence also in the global memory order) if a precedes b in program order, a and b
both access regular main memory (rather than 170 regions), and any of the following hold:

® QOverlapping-Address Orderings:

1. b is a store, and a and b access overlapping memory addresses

2. a and b are loads, x is a byte read by both a and b, there is no store to x between a and b in
program order, and a and b return values for x written by different memory operations

3. a is generated by an AMO or SC instruction, b is a load, and b returns a value written by a
® Explicit Synchronization

4. There is a FENCE instruction that orders a before b

5. a has an acquire annotation

6. b has a release annotation

7. a and b both have RCsc annotations

The RISC-V Instruction Set Manual Volume I | © RISC-V International

18.2. CSR Dependency Tracking Granularity | Page 95

8. a is paired with b
® Syntactic Dependencies
9. b has a syntactic address dependency on a
10. b has a syntactic data dependency on a
11. b is a store, and b has a syntactic control dependency on a
® Pipeline Dependencies

12. b is a load, and there exists some store m between a and b in program order such that m has
an address or data dependency on a, and b returns a value written by m

13. b is a store, and there exists some instruction m between a and b in program order such that m
has an address dependency on a
18.1.4. Memory Model Axioms

An execution of a RISC-V program obeys the RVWMO memory consistency model only if there exists a
global memory order conforming to preserved program order and satisfying the load value axiom, the
atomicity axiom, and the progress axiom.

18.1.4.1. Load Value Axiom

Each byte of each load 7 returns the value written to that byte by the store that is the latest in global
memory order among the following stores:

1. Stores that write that byte and that precede i in the global memory order

2. Stores that write that byte and that precede i in program order

18.1.4.2. Atomicity Axiom

If r and w are paired load and store operations generated by aligned LR and SC instructions in a hart
h, s is a store to byte x, and r returns a value written by s, then s must precede w in the global memory
order, and there can be no store from a hart other than h to byte x following s and preceding w in the
global memory order.

The Atomicity Axiom theoretically supports LR/SC pairs of different widths and to

o mismatched addresses, since implementations are permitted to allow SC operations
to succeed in such cases. However, in practice, we expect such patterns to be rare,
and their use is discouraged.

18.1.4.3. Progress Axiom

No memory operation may be preceded in the global memory order by an infinite sequence of other
memory operations.

18.2. CSR Dependency Tracking Granularity

Table 13. Granularities at which syntactic dependencies are tracked through CSRs

The RISC-V Instruction Set Manual Volume I | © RISC-V International

18.3. Source and Destination Register Listings | Page 96

Name Portions Tracked as Independent Aliases
Units

fflags Bits 4, 3,2,1, 0 fcsr

frm entire CSR fcsr

fcsr Bits 7-5, 4, 3,2,1, 0 fflags, frm

Note: read-only CSRs are not listed, as they do not participate in the definition of syntactic
dependencies.

18.3. Source and Destination Register Listings

This section provides a concrete listing of the source and destination registers for each instruction.
These listings are used in the definition of syntactic dependencies in Section 18.1.2.

The term "accumulating CSR" is used to describe a CSR that is both a source and a destination
register, but which carries a dependency only from itself to itself.

Instructions carry a dependency from each source register in the "Source Registers" column to each
destination register in the "Destination Registers" column, from each source register in the "Source
Registers" column to each CSR in the "Accumulating CSRs" column, and from each CSR in the
"Accumulating CSRs" column to itself, except where annotated otherwise.

Key:

® “Address source register
® °Data source register
® 1 The instruction does not carry a dependency from any source register to any destination register
® + The instruction carries dependencies from source register(s) to destination register(s) as
specified
Table 14. RV32I Base Integer Instruction Set

Source Registers Destination Registers Accumulating CSRs

LUI rd
AUIPC rd
JAL rd
JALRT rsi1 rd
BEQ rsi, rs2
BNE rsi, rs2
BLT rsi, rs2
BGE rsi, rs2
BLTU rsi, rs2
BGEU rsi, rs2
LBt rs1? rd

The RISC-V Instruction Set Manual Volume I | © RISC-V International

LH T
LW t
LBU t
LHU t
SB

SH

SW
ADDI
SLTI
SLTIU
XORI
ORI
ANDI
SLLI
SRLI
SRAI
ADD
SUB
SLL
SLT
SLTU
XOR
SRL
SRA
OR
AND
FENCE
FENCE.I
ECALL
EBREAK
CSRRW#
CSRRS#*

CSRRC#

Source Registers
rs1t

rs1?

rs1*

rs1?

rs14, rs2P®
rs14, rs2P°
rs14, rs2P®
rsi1

rsi1

rsi1

rsi1

rsi1

rsi1

rsi1

rsi1

rsi1

rsi, rs2
rsi, rs2
rsi, rs2
rsi, rs2
rsi, rs2
rsi, rs2
rsi, rs2
rsi, rs2
rsi, rs2

rsi, rs2

rsi, csr’
rs1, csr

rsi1, csr

18.3. Source and Destination Register Listings | Page 97

Destination Registers Accumulating CSRs
rd
rd
rd

rd

rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd

rd

rd, csr
rd’, csr

rd ", csr

* carries a dependency from rs7 to csr and from csr to rd

CSRRWI * csr’

rd, csr

‘unless rd=x0
‘unless rs1=x0

‘unless rs1=x0

‘unless rd=x0®

The RISC-V Instruction Set Manual Volume I | © RISC-V International

18.3. Source and Destination Register Listings | Page 98

Source Registers Destination Registers Accumulating CSRs
CSRRSI # csr rd, csr’ ‘unless uimm([4:0]=0
CSRRCI % csr rd, csr’ ‘unless uimm[4:0]=0

¥ carries a dependency from csr to rd

Table 15. RV64I Base Integer Instruction Set

Source Registers Destination Registers Accumulating CSRs

LWU t rs1* rd
LDt rs1? rd
SD rs14, rs2P®

SLLI rsi1 rd
SRLI rsi1 rd
SRAI rsi1 rd
ADDIW rsi1 rd
SLLIW rsi1 rd
SRLIW rsi1 rd
SRAIW rsi1 rd
ADDW rsi, rs2 rd
SUBW rsi, rs2 rd
SLLW rsi, rs2 rd
SRLW rsi, rs2 rd
SRAW rsi, rs2 rd

Table 16. RV32M Standard Extension

Source Registers Destination Registers Accumulating CSRs
MUL rsi, rs2 rd
MULH rsi, rs2 rd
MULHSU rsi, rs2 rd
MULHU rsi, rs2 rd
DIV rsi, rs2 rd
DIVU rsi, rs2 rd
REM rsi, rs2 rd
REMU rsi, rs2 rd

Table 17. RV64M Standard Extension

Source Registers Destination Registers Accumulating CSRs
MULW rs1,rs2 rd
DIVW rsi, rs2 rd

The RISC-V Instruction Set Manual Volume I | © RISC-V International

18.3. Source and Destination Register Listings | Page 99

Source Registers Destination Registers Accumulating CSRs
DIVUW rsi, rs2 rd
REMW rsi1,rs2 rd
REMUW rsi, rs2 rd

Table 18. RV32A Standard Extension

Source Registers Destination Registers Accumulating CSRs
LR.W+ rs1# rd
SC.W+t rs1#® rs2°® rd’ " if successful
AMOSWAP.W+ rs14 rs2° rd
AMOADD.W+t rs1#® rs2°® rd
AMOXOR.W+ rs14 rs2° rd
AMOAND.W+t rs1#® rs2°® rd
AMOOR.W+t rs14, rs2® rd
AMOMIN.W+t rs14 rs2° rd
AMOMAX.W+t rs1#® rs2°® rd
AMOMINU.W+ rs14 rs2° rd
AMOMAXU.W+t rs1#® rs2°® rd

Table 19. RV64A Standard Extension

Source Registers Destination Registers Accumulating CSRs
LR.DT rs1# rd
SC.DT rs14, rs2P rd’ "if successful
AMOSWAP.Dt rs14, rs2P rd
AMOADD.Dt rs14, rs2P rd
AMOXOR.Dt rs14, rs2P rd
AMOAND.Dt rs14, rs2® rd
AMOOR.Dt rs1#, rs2° rd
AMOMIN.Dt rs14, rs2° rd
AMOMAX.Dt rs14, rs2° rd
AMOMINU.Dt rs1#, rs2° rd
AMOMAXU.DT rs14, rs2° rd

Table 20. RV32F Standard Extension

Source Registers Destination Registers Accumulating CSRs
FLW+t rs1# rd
FSW rs14, rs2°
FMADD.S rsi,rs2, rs3, frm’ rd NV, OF, UF, NX if rm=111

The RISC-V Instruction Set Manual Volume I | © RISC-V International

18.3. Source and Destination Register Listings | Page 100

FMSUB.S
FNMSUB.S
FNMADD.S
FADD.S
FSUB.S
FMUL.S
FDIV.S
FSQRT.S
FSGNJ.S
FSGNJN.S
FSGNJX.S
FMIN.S
FMAX.S
FCVT.W.S
FCVT.WU.S
FMV.X.W
FEQ.S
FLT.S
FLE.S
FCLASS.S
FCVT.S.W
FCVT.S.WU

FMV.W.X

FCVT.LS
FCVT.LU.S
FCVT.S.L

FCVT.S.LU

FLDT
FSD

FMADD.D

Source Registers
rsi1,rs2, rs3, frm’
rsi,rs2, rs3, frm’
rs1,rs2, rs3, frm’
rs1, rs2, frm’

rsi, rs2, frm’

rs1, rs2, frm’

rsi, rs2, frm’

rs1, frm’

rsi, rs2

rsi,rs2

rsi, rs2

rsi, rs2

rsi, rs2

rsi1, frm’

rs1, frm’

rsi1

rsi, rs2

rsi, rs2

rsi, rs2

rsi1

rs1, frm’

rs1, frm’

rsi

Source Registers
rsi, frm’
rs1, frm’
rsi, frm’

rs1, frm’

Source Registers

rs1#
rs14, rs2°

rsi1,rs2, rs3, frm’

Destination Registers
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd

rd

Destination Registers
rd
rd
rd

rd

Destination Registers

rd

rd

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Accumulating CSRs
NV, OF, UF, NX

NV, OF, UF, NX

NV, OF, UF, NX

NV, OF, NX

NV, OF, NX

NV, OF, UF, NX

NV, DZ, OF, UF, NX

NV, NX

NV
NV
NV, NX

NV, NX

NV
NV

NV

NX

NX

Table 21. RV64F Standard Extension

Accumulating CSRs
NV, NX

NV, NX

NX

NX

Table 22. RV32D Standard Extension

Accumulating CSRs

NV, OF, UF, NX

if rm=111
if rm=111
if rm=111
“if rm=111
if rm=111
if rm=111
if rm=111

if rm=111

if rm=111

‘i rm=111

“if rm=111

if rm=111

if rm=111
if rm=111
if rm=111

'if rm=111

if rm=111

18.3. Source and Destination Register Listings | Page 101

Source Registers Destination Registers Accumulating CSRs

FMSUB.D rsi1, rs2, rs3, frm’ rd NV, OF, UF, NX if rm=111
FNMSUB.D rsi1,rs2, rs3, frm’ rd NV, OF, UF, NX if rm=111
FNMADD.D rsi,rs2, rs3, frm’ rd NV, OF, UF, NX “if rm=111
FADD.D rs1, rs2, frm’ rd NV, OF, NX if rm=111
FSUB.D rsi, rs2, frm’ rd NV, OF, NX if rm=111
FMUL.D rs1, rs2, frm’ rd NV, OF, UF, NX if rm=111
FDIV.D rsi, rs2, frm’ rd NV, DZ, OF, UF, NX if rm=111
FSQRT.D rs1, frm’ rd NV, NX if rm=111
FSGNJ.D rsi1, rs2 rd

FSGNJN.D rsi, rs2 rd

FSGNJX.D rsi1, rs2 rd

FMIN.D rsi, rs2 rd NV

FMAX.D rsi,rs2 rd NV

FCVT.S.D rsi, frm’ rd NV, OF, UF, NX if rm=111
FCVT.D.S rsi rd NV

FEQ.D rsi, rs2 rd NV

FLT.D rsi,rs2 rd NV

FLE.D rsi, rs2 rd NV

FCLASS.D rsi1 rd

FCVT.W.D rsi, rd NV, NX if rm=111
FCVT.WU.D rsi, frm’ rd NV, NX if rm=111
FCVT.D.W rsi1 rd

FCVT.D.WU rsi rd

Table 23. RV64D Standard Extension

Source Registers Destination Registers Accumulating CSRs
FCVT.LD rsi1, frm’ rd NV, NX “if rm=111
FCVT.LU.D rs1, frm’ rd NV, NX if rm=111
FMV.X.D rsi1 rd
FCVT.D.L rs1, frm’ rd NX if rm=111
FCVT.D.LU rsi1, frm’ rd NX if rm=111
FMV.D.X rsi rd

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 19. "Ztso" Extension for Total Store Ordering, Version 1.0 | Page 102

Chapter 19. "Ztso" Extension for Total Store Ordering, Version
1.0

This chapter defines the "Ztso" extension for the RISC-V Total Store Ordering (RVTSO) memory
consistency model. RVTSO is defined as a delta from RVWMO, which is defined in Section 18.1.

The Ztso extension is meant to facilitate the porting of code originally written for the

o x86 or SPARC architectures, both of which use TSO by default. It also supports
implementations which inherently provide RVTSO behavior and want to expose that
fact to software.

RVTSO makes the following adjustments to RVWMO:

® All load operations behave as if they have an acquire-RCpc annotation
® All store operations behave as if they have a release-RCpc annotation.

® All AMOs behave as if they have both acquire-RCsc and release-RCsc annotations.

These rules render all PPO rules except 4-7 redundant. They also make redundant
any non-I/0 fences that do not have both PW and SR set. Finally, they also imply that
no memory operation will be reordered past an AMO in either direction.

o In the context of RVTSO, as is the case for RVYWMO, the storage ordering annotations
are concisely and completely defined by PPO rules 5-7. In both of these memory
models, it is the Section 18.1.4.1 that allows a hart to forward a value from its store
buffer to a subsequent (in program order) load—that is to say that stores can be
forwarded locally before they are visible to other harts.

Additionally, if the Ztso extension is implemented, then vector memory instructions in the V extension
and Zve family of extensions follow RVTSO at the instruction level. The Ztso extension does not
strengthen the ordering of intra-instruction element accesses.

In spite of the fact that Ztso adds no new instructions to the ISA, code written assuming RVTSO will
not run correctly on implementations not supporting Ztso. Binaries compiled to run only under Ztso
should indicate as such via a flag in the binary, so that platforms which do not implement Ztso can
simply refuse to run them.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.1. Pseudocode for instruction semantics | Page 103

Chapter 20. "CMO" Extensions for Base Cache Management
Operation ISA, Version 1.0.0

20.1. Pseudocode for instruction semantics

The semantics of each instruction in the Instructions chapter is expressed in a SAIL-like syntax.

20.2. Introduction

Cache-management operation (or CMO) instructions perform operations on copies of data in the
memory hierarchy. In general, CMO instructions operate on cached copies of data, but in some cases,
a CMO instruction may operate on memory locations directly. Furthermore, CMO instructions are
grouped by operation into the following classes:

® A management instruction manipulates cached copies of data with respect to a set of agents that
can access the data

® A zero instruction zeros out a range of memory locations, potentially allocating cached copies of
data in one or more caches

® A prefetch instruction indicates to hardware that data at a given memory location may be accessed

in the near future, potentially allocating cached copies of data in one or more caches

This document introduces a base set of CMO ISA extensions that operate specifically on cache blocks
or the memory locations corresponding to a cache block; these are known as cache-block operation (or
CBO) instructions. Each of the above classes of instructions represents an extension in this
specification:

® The Zicbom extension defines a set of cache-block management instructions: cB0.INVAL, CBO.CLEAN,
and CBO.FLUSH

® The Zicboz extension defines a cache-block zero instruction: cB0.ZER0O

® The Zicbop extension defines a set of cache-block prefetch instructions: PREFETCH.R, PREFETCH.W, and

PREFETCH.I

The execution behavior of the above instructions is also modified by CSR state added by this
specification.

The remainder of this document provides general background information on CMO instructions and
describes each of the above ISA extensions.

The term CMO encompasses all operations on caches or resources related to caches.

0 The term CBO represents a subset of CMOs that operate only on cache blocks. The
first CMO extensions only define CBOs.

20.3. Background

This chapter provides information common to all CMO extensions.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.3. Background | Page 104

20.3.1. Memory and Caches

A memory location is a physical resource in a system uniquely identified by a physical address. An
agent is a logic block, such as a RISC-V hart, accelerator, I/0 device, etc., that can access a given
memory location.

o A given agent may not be able to access all memory locations in a system, and two
different agents may or may not be able to access the same set of memory locations.

A load operation (or store operation) is performed by an agent to consume (or modify) the data at a
given memory location. Load and store operations are performed as a result of explicit memory
accesses to that memory location. Additionally, a read transfer from memory fetches the data at the
memory location, while a write transfer to memory updates the data at the memory location.

A cache is a structure that buffers copies of data to reduce average memory latency. Any number of
caches may be interspersed between an agent and a memory location, and load and store operations
from an agent may be satisfied by a cache instead of the memory location.

Load and store operations are decoupled from read and write transfers by caches.

o For example, a load operation may be satisfied by a cache without performing a read
transfer from memory, or a store operation may be satisfied by a cache that first
performs a read transfer from memory.

Caches organize copies of data into cache blocks, each of which represents a contiguous, naturally
aligned power-of-two (or NAPOT) range of memory locations. A cache block is identified by any of the
physical addresses corresponding to the underlying memory locations. The capacity and organization
of a cache and the size of a cache block are both implementation-specific, and the execution
environment provides software a means to discover information about the caches and cache blocks in
a system. In the initial set of CMO extensions, the size of a cache block shall be uniform throughout
the system.

o In future CMO extensions, the requirement for a uniform cache block size may be
relaxed.

Implementation techniques such as speculative execution or hardware prefetching may cause a given
cache to allocate or deallocate a copy of a cache block at any time, provided the corresponding
physical addresses are accessible according to the supported access type PMA and are cacheable
according to the cacheability PMA. Allocating a copy of a cache block results in a read transfer from
another cache or from memory, while deallocating a copy of a cache block may result in a write
transfer to another cache or to memory depending on whether the data in the copy were modified by a
store operation. Additional details are discussed in Coherent Agents and Caches.

20.3.2. Cache-Block Operations

A CBO instruction causes one or more operations to be performed on the cache blocks identified by
the instruction. In general, a CBO instruction may identify one or more cache blocks; however, in the
initial set of CMO extensions, CBO instructions identify a single cache block only.

A cache-block management instruction performs one of the following operations, relative to the copy
of a given cache block allocated in a given cache:

® An invalidate operation deallocates the copy of the cache block

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.4. Coherent Agents and Caches | Page 105

® A clean operation performs a write transfer to another cache or to memory if the data in the copy
of the cache block have been modified by a store operation

® A flush operation atomically performs a clean operation followed by an invalidate operation

Additional details, including the actual operation performed by a given cache-block management
instruction, are described in Cache-Block Management Instructions.

A cache-block zero instruction performs a set of store operations that write zeros to the set of bytes
corresponding to a cache block. Unless specified otherwise, the store operations generated by a
cache-block zero instruction have the same general properties and behaviors that other store
instructions in the architecture have. An implementation may or may not update the entire set of bytes
atomically with a single store operation. Additional details are described in Cache-Block Zero
Instructions.

A cache-block prefetch instruction is a HINT to the hardware that software expects to perform a
particular type of memory access in the near future. Additional details are described in Cache-Block
Prefetch Instructions.

20.4. Coherent Agents and Caches

For a given memory location, a set of coherent agents consists of the agents for which all of the
following hold:

® Store operations from all agents in the set appear to be serialized with respect to each other
® Store operations from all agents in the set eventually appear to all other agents in the set

® A load operation from an agent in the set returns data from a store operation from an agent in the
set (or from the initial data in memory)

The coherent agents within such a set shall access a given memory location with the same physical
address and the same physical memory attributes; however, if the coherence PMA for a given agent
indicates a given memory location is not coherent, that agent shall not be a member of a set of
coherent agents with any other agent for that memory location and shall be the sole member of a set
of coherent agents consisting of itself.

An agent who is a member of a set of coherent agents is said to be coherent with respect to the other
agents in the set. On the other hand, an agent who is not a member is said to be non-coherent with
respect to the agents in the set.

Caches introduce the possibility that multiple copies of a given cache block may be present in a
system at the same time. An implementation-specific mechanism keeps these copies coherent with
respect to the load and store operations from the agents in the set of coherent agents. Additionally, if
a coherent agent in the set executes a CBO instruction that specifies the cache block, the resulting
operation shall apply to any and all of the copies in the caches that can be accessed by the load and
store operations from the coherent agents.

An operation from a CBO instruction is defined to operate only on the copies of a
cache block that are cached in the caches accessible by the explicit memory

o accesses performed by the set of coherent agents. This includes copies of a cache
block in caches that are accessed only indirectly by load and store operations, e.qg.
coherent instruction caches.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.4. Coherent Agents and Caches | Page 106

The set of caches subject to the above mechanism form a set of coherent caches, and each coherent
cache has the following behaviors, assuming all operations are performed by the agents in a set of
coherent agents:

® A coherent cache is permitted to allocate and deallocate copies of a cache block and perform read
and write transfers as described in Memory and Caches

® A coherent cache is permitted to perform a write transfer to memory provided that a store
operation has modified the data in the cache block since the most recent invalidate, clean, or flush
operation on the cache block

® At least one coherent cache is responsible for performing a write transfer to memory once a store
operation has modified the data in the cache block until the next invalidate, clean, or flush
operation on the cache block, after which no coherent cache is responsible (or permitted) to
perform a write transfer to memory until the next store operation has modified the data in the
cache block

® A coherent cache is required to perform a write transfer to memory if a store operation has
modified the data in the cache block since the most recent invalidate, clean, or flush operation on
the cache block and if the next clean or flush operation requires a write transfer to memory

The above restrictions ensure that a "clean" copy of a cache block, fetched by a read

o transfer from memory and unmodified by a store operation, cannot later overwrite the
copy of the cache block in memory updated by a write transfer to memory from a
non-coherent agent.

A non-coherent agent may initiate a cache-block operation that operates on the set of coherent
caches accessed by a set of coherent agents. The mechanism to perform such an operation is
implementation-specific.

20.4.1. Memory Ordering

20.4.1.1. Preserved Program Order

The preserved program order (abbreviated PPO) rules are defined by the RVWMO memory ordering
model. How the operations resulting from CMO instructions fit into these rules is described below.

For cache-block management instructions, the resulting invalidate, clean, and flush operations behave
as stores in the PPO rules subject to one additional overlapping address rule. Specifically, if a
precedes b in program order, then a will precede b in the global memory order if:

® a3 is an invalidate, clean, or flush, b is a load, and a and b access overlapping memory addresses

The above rule ensures that a subsequent load in program order never appears in the
o global memory order before a preceding invalidate, clean, or flush operation to an
overlapping address.

Additionally, invalidate, clean, and flush operations are classified as W or O (depending on the physical
memory attributes for the corresponding physical addresses) for the purposes of predecessor and
successor sets in FENCE instructions. These operations are not ordered by other instructions that order
stores, e.g. FENCE.I and SFENCE.VMA.

For cache-block zero instructions, the resulting store operations behave as stores in the PPO rules and
are ordered by other instructions that order stores.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.4. Coherent Agents and Caches | Page 107

Finally, for cache-block prefetch instructions, the resulting operations are not ordered by the PPO rules
nor are they ordered by any other ordering instructions.

20.4.1.2. Load Values

An invalidate operation may change the set of values that can be returned by a load. In particular, an
additional condition is added to the Load Value Axiom:

® Tf an invalidate operation i precedes a load r and operates on a byte x returned by r, and no store
to x appears between 7 and r in program order or in the global memory order, then r returns any of
the following values for x:

1. If no clean or flush operations on x precede i in the global memory order, either the initial value
of x or the value of any store to x that precedes 7

2. If no store to x precedes a clean or flush operation on x in the global memory order and if the
clean or flush operation on x precedes i in the global memory order, either the initial value of x
or the value of any store to x that precedes i

3. If a store to x precedes a clean or flush operation on x in the global memory order and if the
clean or flush operation on x precedes i in the global memory order, either the value of the
latest store to x that precedes the latest clean or flush operation on x or the value of any store
to x that both precedes i and succeeds the latest clean or flush operation on x that precedes 7

4. The value of any store to x by a non-coherent agent regardless of the above conditions

The first three bullets describe the possible load values at different points in the
global memory order relative to clean or flush operations. The final bullet implies that
the load value may be produced by a non-coherent agent at any time.

20.4.2. Traps

Execution of certain CMO instructions may result in traps due to CSR state, described in the Control
and Status Register State section, or due to the address translation and protection mechanisms. The
trapping behavior of CMO instructions is described in the following sections.

20.4.2.1. Illegal Instruction and Virtual Instruction Exceptions

Cache-block management instructions and cache-block zero instructions may raise illegal instruction
exceptions or virtual instruction exceptions depending on the current privilege mode and the state of
the CMO control registers described in the Control and Status Register State section.

Cache-block prefetch instructions raise neither illegal instruction exceptions nor virtual instruction
exceptions.
20.4.2.2. Page Fault, Guest-Page Fault, and Access Fault Exceptions

Similar to load and store instructions, CMO instructions are explicit memory access instructions that
compute an effective address. The effective address is ultimately translated into a physical address
based on the privilege mode and the enabled translation mechanisms, and the CMO extensions
impose the following constraints on the physical addresses in a given cache block:

® The PMP access control bits shall be the same for all physical addresses in the cache block, and if

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.4. Coherent Agents and Caches | Page 108

write permission is granted by the PMP access control bits, read permission shall also be granted

® The PMAs shall be the same for all physical addresses in the cache block, and if write permission
is granted by the supported access type PMAs, read permission shall also be granted

If the above constraints are not met, the behavior of a CBO instruction is UNSPECIFIED.

e This specification assumes that the above constraints will typically be met for main
memory regions and may be met for certain I/0 regions.

Additionally, for the purposes of PMP and PMA checks, the access size of a CMO instruction equals
the size of the cache block accessed by the instruction.

The Zicboz extension introduces an additional supported access type PMA for cache-block zero
instructions. Main memory regions are required to support accesses by cache-block zero instructions;
however, I/0 regions may specify whether accesses by cache-block zero instructions are supported.

A cache-block management instruction is permitted to access the specified cache block whenever a
load instruction or store instruction is permitted to access the corresponding physical addresses. If
neither a load instruction nor store instruction is permitted to access the physical addresses, but an
instruction fetch is permitted to access the physical addresses, whether a cache-block management
instruction is permitted to access the cache block is UNSPECIFIED. If access to the cache block is not
permitted, a cache-block management instruction raises a store page fault or store guest-page fault
exception if address translation does not permit any access or raises a store access fault exception
otherwise. During address translation, the instruction also checks the accessed bit and may either
raise an exception or set the bit as required.

The interaction between cache-block management instructions and instruction
e fetches will be specified in a future extension.

As implied by omission, a cache-block management instruction does not check the
dirty bit and neither raises an exception nor sets the bit.

A cache-block zero instruction is permitted to access the specified cache block whenever a store
instruction is permitted to access the corresponding physical addresses and when the PMAs indicate
that cache-block zero instructions are a supported access type. If access to the cache block is not
permitted, a cache-block zero instruction raises a store page fault or store guest-page fault exception
if address translation does not permit write access or raises a store access fault exception otherwise.
During address translation, the instruction also checks the accessed and dirty bits and may either raise
an exception or set the bits as required.

A cache-block prefetch instruction is permitted to access the specified cache block whenever a load
instruction, store instruction, or instruction fetch is permitted to access the corresponding physical
addresses. If access to the cache block is not permitted, a cache-block prefetch instruction does not
raise any exceptions and shall not access any caches or memory. During address translation, the
instruction does not check the accessed and dirty bits and neither raises an exception nor sets the
bits.

When a page fault, guest-page fault, or access fault exception is taken, the relevant *tval CSR is written
with the faulting effective address (i.e. the value of rs7).

Like a load or store instruction, a CMO instruction may or may not be permitted to
o access a cache block based on the states of the mprv, MpPv, and MPP bits in mstatus and
the sum and MXR bits in mstatus, sstatus, and vsstatus.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.4. Coherent Agents and Caches | Page 109

This specification expects that implementations will process cache-block
management instructions like store/AMO instructions, so store/AMO exceptions are
appropriate for these instructions, regardless of the permissions required.

20.4.2.3. Address Misaligned Exceptions

CMO instructions do not generate address misaligned exceptions.

20.4.2.4. Breakpoint Exceptions and Debug Mode Entry

Unless otherwise defined by the debug architecture specification, the behavior of trigger modules with
respect to CMO instructions is UNSPECIFIED.

For the Zicbom, Zicboz, and Zicbop extensions, this specification recommends the
following common trigger module behaviors:

® Type 6 address match triggers, i.e. tdatal.type=6 and mcontrolé.select=6, should be
supported
® Type 2 address/data match triggers, i.e. tdatal.type=2, should be unsupported

® The size of a memory access equals the size of the cache block accessed, and
the compare values follow from the addresses of the NAPOT memory region
corresponding to the cache block containing the effective address

® Unless an encoding for a cache block is added to the mcontrolé.size field, an
address trigger should only match a memory access from a CBO instruction if

mcontrolé.size=0

If the Zicbom extension is implemented, this specification recommends the
following additional trigger module behaviors:
® Implementing address match triggers should be optional

o ® Type 6 data match triggers, i.e. tdatal.type=6 and mcontrolé.select=1, should be
unsupported

® Memory accesses are considered to be stores, i.e. an address trigger matches

only if mcontrolé.store=1

If the Zicboz extension is implemented, this specification recommends the following
additional trigger module behaviors:
® Implementing address match triggers should be mandatory

® Type 6 data match triggers, i.e. tdatal.type=6 and mcontrolé.select=1, should be
supported, and implementing these triggers should be optional

® Memory accesses are considered to be stores, i.e. an address trigger matches
only if mcontrolé6.store=1

If the Zicbop extension is implemented, this specification recommends the following
additional trigger module behaviors:

® mplementing address match triggers should be optional

® Type 6 data match triggers, i.e. tdatal.type=6 and mcontrolé.select=1, should be

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.4. Coherent Agents and Caches | Page 110

unsupported

® Memory accesses may be considered to be loads or stores depending on the
implementation, i.e. whether an address trigger matches on these instructions
when mcontrolé.load=1 Or mcontrolé.store=1 IS implementation-specific

This specification also recommends that the behavior of trigger modules with respect
to the Zicboz extension should be defined in version 1.0 of the debug architecture
specification. The behavior of trigger modules with respect to the Zicbom and Zicbop
extensions is expected to be defined in future extensions.

20.4.2.5. Hypervisor Extension

For the purposes of writing the mtinst or htinst register on a trap, the following standard
transformation is defined for cache-block management instructions and cache-block zero instructions:

31 20 19 15 14 12 1N 7 6 0

operation O 0 0 0 O funct3 O © 0 0 ©® opcode

The operation field corresponds to the 12 most significant bits of the trapping instruction.

e As described in the hypervisor extension, a zero may be written into mtinst or htinst
instead of the standard transformation defined above.

20.4.3. Effects on Constrained LR/SC Loops

The following event is added to the list of events that satisfy the eventuality guarantee provided by
constrained LR/SC loops, as defined in the A extension:

® Some other hart executes a cache-block management instruction or a cache-block zero instruction
to the reservation set of the LR instruction in H's constrained LR/SC loop.

The above event has been added to accommodate cache coherence protocols that
cannot distinguish between invalidations for stores and invalidations for cache-block
management operations.

Aside from the above event, CMO instructions neither change the properties of

6 constrained LR/SC loops nor modify the eventuality guarantee provided by them. For
example, executing a CMO instruction may cause a constrained LR/SC loop on any
hart to fail periodically or may cause a unconstrained LR/SC sequence on the same
hart to fail always. Additionally, executing a cache-block prefetch instruction does not
impact the eventuality guarantee provided by constrained LR/SC loops executed on
any hart.

20.4.4. Software Discovery

The initial set of CMO extensions requires the following information to be discovered by software:

® The size of the cache block for management and prefetch instructions
® The size of the cache block for zero instructions

® CBIE support at each privilege level

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.5. Control and Status Register State | Page 111

Other general cache characteristics may also be specified in the discovery mechanism.

20.5. Control and Status Register State
Three CSRs control the execution of CMO instructions:

® nenvcfg
® senvcfg
® henvefg
The senvcfg register is used by all supervisor modes, including VS-mode. A hypervisor is responsible for

saving and restoring senvcfg on guest context switches. The henvcfg register is only present if the H-
extension is implemented and enabled.

Each xenvcfg register (where x is m, s, or h) has the following generic format:

Table 24. Generic Format for xenvcfg CSRs
Bits Name Description

[5:4] CBIE Cache Block Invalidate instruction Enable. WARL.

Enables the execution of the cache block invalidate instruction, CBO.INVAL, in a lower
privilege mode:
® 00: The instruction raises an illegal instruction or virtual instruction exception
® 01: The instruction is executed and performs a flush operation
® 10: Reserved
® 11: The instruction is executed and performs an invalidate operation
[6] CBCFE Cache Block Clean and Flush instruction Enable
Enables the execution of the cache block clean instruction, CB0.CLEAN, and the cache
block flush instruction, CB0.FLUSH, in a lower privilege mode:
® 0: The instruction raises an illegal instruction or virtual instruction exception
® 1: The instruction is executed
[7] CBZE Cache Block Zero instruction Enable
Enables the execution of the cache block zero instruction, CB0.ZERO, in a lower privilege
mode:
® 0: The instruction raises an illegal instruction or virtual instruction exception

® 1: The instruction is executed

The xenvcfg registers control CBO instruction execution based on the current privilege mode and the
state of the appropriate CSRs, as detailed below.

A CBO.INVAL instruction executes or raises either an illegal instruction exception or a virtual instruction
exception based on the state of the xenvcfg.CBIE fields:

// illegal instruction exceptions

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.5. Control and Status Register State | Page 112

if (((priv_mode != M) &% (menvcfg.CBIE == 00)) ||
((priv_mode == U) && (senvcfg.CBIE == 00)))

<raise illegal instruction exception>
}
// virtual instruction exceptions
else if (((priv_mode == VS) && (henvcfg.CBIE == 00)) ||
((priv_mode == VU) && ((henvcfg.CBIE == 00) || (senvcfg.CBIE == 008))))

<raise virtual instruction exception>
}.
// execute instruction
else
{
if (((priv_mode != M) &% (menvcfg.CBIE == 01)) ||
((priv_mode == U) && (senvcfg.CBIE == 01)) ||
((priv_mode == VS) && (henvcfg.CBIE == 01)) ||
((priv_mode == VU) && ((henvcfg.CBIE == 01) || (senvcfg.CBIE == 01))))

<execute CBO.INVAL and perform flush operation>
}
else
{
<execute CBO.INVAL and perform invalidate operation>
}
}

Until a modified cache block has updated memory, a CB0.INVAL instruction may
expose stale data values in memory if the CSRs are programmed to perform an
invalidate operation. This behavior may result in a security hole if lower privileged
level software performs an invalidate operation and accesses sensitive information in

o memory.

To avoid such holes, higher privileged level software must perform either a clean or
flush operation on the cache block before permitting lower privileged level software
to perform an invalidate operation on the block. Alternatively, higher privileged level
software may program the CSRs so that cBo0.INVAL either traps or performs a flush
operation in a lower privileged level.

A CBO.CLEAN Or CBO.FLUSH instruction executes or raises an illegal instruction or virtual instruction
exception based on the state of the xenvcfg.CBCFE bits:

// illegal instruction exceptions
if (((priv_mode != M) &% !menvcfg.CBCFE) ||
((priv_mode == U) && !senvcfg.CBCFE))

<raise illegal instruction exception>

}.

// virtual instruction exceptions
else if (((priv_mode == VS) && !henvcfg.CBCFE) ||

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.6. Extensions | Page 113

((priv_mode == VU) && !(henvcfg.CBCFE && senvcfg.CBCFE)))

<raise virtual instruction exception>

}.
// execute instruction
else

{
<execute CBO.CLEAN or CBO.FLUSH>

Finally, a cB0.ZERO instruction executes or raises an illegal instruction or virtual instruction exception
based on the state of the xenvcfg.CBZE bits:

// illegal instruction exceptions
if (((priv_mode != M) && !menvcfg.CBZE) ||
((priv_mode == U) && !senvcfg.CBZE))

<raise illegal instruction exception>

}

// virtual instruction exceptions
else if (((priv_mode == VS) && 'henvcfg.CBZE) ||
((priv_mode == VU) && !(henvcfg.CBZE && senvcfg.CBZE)))

<raise virtual instruction exception>

}.
// execute instruction
else

{
<execute CBO.ZERO>

Each xenvcfg register is WARL; however, software should determine the legal values from the execution
environment discovery mechanism.

20.6. Extensions

CMO instructions are defined in the following extensions:

® Cache-Block Management Instructions
® Cache-Block Zero Instructions

® Cache-Block Prefetch Instructions

20.6.1. Cache-Block Management Instructions

Cache-block management instructions enable software running on a set of coherent agents to
communicate with a set of non-coherent agents by performing one of the following operations:

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.6. Extensions | Page 114

® An invalidate operation makes data from store operations performed by a set of non-coherent
agents visible to the set of coherent agents at a point common to both sets by deallocating all
copies of a cache block from the set of coherent caches up to that point

® A clean operation makes data from store operations performed by the set of coherent agents
visible to a set of non-coherent agents at a point common to both sets by performing a write
transfer of a copy of a cache block to that point provided a coherent agent performed a store
operation that modified the data in the cache block since the previous invalidate, clean, or flush
operation on the cache block

® A flush operation atomically performs a clean operation followed by an invalidate operation

In the Zicbom extension, the instructions operate to a point common to all agents in the system. In
other words, an invalidate operation ensures that store operations from all non-coherent agents visible
to agents in the set of coherent agents, and a clean operation ensures that store operations from
coherent agents visible to all non-coherent agents.

The Zicbom extension does not prohibit agents that fall outside of the above
architectural definition;, however, software cannot rely on the defined cache
0 operations to have the desired effects with respect to those agents.

Future extensions may define different sets of agents for the purposes of
performance optimization.

These instructions operate on the cache block whose effective address is specified in rsi1. The
effective address is translated into a corresponding physical address by the appropriate translation
mechanisms.

The following instructions comprise the Zicbom extension:

RV32 RV64 Mnemonic Instruction
v v cbo.clean base Cache Block Clean
v v cbo.flush base Cache Block Flush
v v cbo.inval base Cache Block Invalidate

20.6.2. Cache-Block Zero Instructions

Cache-block zero instructions store zeros to the set of bytes corresponding to a cache block. An
implementation may update the bytes in any order and with any granularity and atomicity, including
individual bytes.

Cache-block zero instructions store zeros independently of whether data from the
e underlying memory locations are cacheable. In addition, this specification does not
constrain how the bytes are written.

These instructions operate on the cache block, or the memory locations corresponding to the cache
block, whose effective address is specified in rs1. The effective address is translated into a
corresponding physical address by the appropriate translation mechanisms.

The following instructions comprise the Zicboz extension:

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.7. Instructions | Page 115

RV32 RV64 Mnemonic Instruction

v4 4 cbo.zero base Cache Block Zero

20.6.3. Cache-Block Prefetch Instructions

Cache-block prefetch instructions are HINTs to the hardware to indicate that software intends to
perform a particular type of memory access in the near future. The types of memory accesses are
instruction fetch, data read (i.e. load), and data write (i.e. store).

These instructions operate on the cache block whose effective address is the sum of the base address
specified in rs7 and the sign-extended offset encoded in imm[11:0], where imm[4:0] shall equal
obeeese. The effective address is translated into a corresponding physical address by the appropriate
translation mechanisms.

Cache-block prefetch instructions are encoded as ORI instructions with rd equal to
o 0booo0; however, for the purposes of effective address calculation, this field is also
interpreted as imm[4:0] like a store instruction.

The following instructions comprise the Zicbop extension:

RV32 RV64 Mnemonic Instruction
v v prefetch.i offset(base) Cache Block Prefetch for Instruction Fetch
V4 v prefetch.r offset(base) Cache Block Prefetch for Data Read
4 v prefetch.w offset(base) Cache Block Prefetch for Data Write

20.7. Instructions

20.7.1. cbo.clean

Synopsis

Perform a clean operation on a cache block

Mnemonic

cbo.clean offset(base)

Encoding

31 20 19 15 14 12 1 7 6)

® 6 8 © © © 6 0 0 0 0 1 rs1 ® 1 0/06 © © © 6|6 € ® 1 1 1 1
CBO.CLEAN base CBO MISC-MEM

Description

A cbo.clean instruction performs a clean operation on the cache block whose effective address is
the base address specified in rs1. The offset operand may be omitted; otherwise, any expression
that computes the offset shall evaluate to zero. The instruction operates on the set of coherent
caches accessed by the agent executing the instruction.

o When executing a cbo.clean instruction, an implementation may instead perform a

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.7. Instructions | Page 116

flush operation, since the result of that operation is indistinguishable from the
sequence of performing a clean operation just before deallocating all cached copies
in the set of coherent caches.

Operation

TODO

20.7.2. cbo.flush

Synopsis
Perform a flush operation on a cache block

Mnemonic
cbo.flush offset(base)

Encoding

31 20 19 15 14 12 1 7 6)

® 6 8 © 8 © 0 0 0 8 1 O rs1 ® 1 0/06 © © © 0|60 € 8 1 1 1 1
CBO.FLUSH base CBO MISC-MEM

Description

A cbo.flush instruction performs a flush operation on the cache block whose that contains the
address specified in rs1. It is not required that rs7 is aligned to the size of a cache block. On faults,
the faulting virtual address is considered to be the value in rs1, rather than the base address of the
cache block. The instruction operates on the set of coherent caches accessed by the agent
executing the instruction.

The assembly offset operand may be omitted. If it isn’t then any expression that computes the offset
shall evaluate to zero.

Operation

TODO

20.7.3. cbo.inval

Synopsis
Perform an invalidate operation on a cache block

Mnemonic

cbo.inval offset(base)

Encoding

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.7. Instructions | Page 117

31 20 19 15 14 12 1 7 6)
® 6 8 © © 8 8 0 0 8 0 O rs1 ® 1 06/6 © 8 © 6|6 6 ® 1 1 1 1

CBO.INVAL base CBO MISC-MEM
Description

A cbo.inval instruction performs an invalidate operation on the cache block that contains the
address specified in rs1. It is not required that rs7 is aligned to the size of a cache block. On faults,
the faulting virtual address is considered to be the value in rs1, rather than the base address of the
cache block. The instruction operates on the set of coherent caches accessed by the agent
executing the instruction.

Depending on CSR programming, the instruction may perform a flush operation instead of an
invalidate operation.

The assembly offset operand may be omitted. If it isn’t then any expression that computes the offset
shall evaluate to zero.

When executing a cbo.inval instruction, an implementation may instead perform a

o flush operation, since the result of that operation is indistinguishable from the
sequence of performing a write transfer to memory just before performing an
invalidate operation.

Operation

TODO

20.7.4. cbo.zero

Synopsis

Store zeros to the full set of bytes corresponding to a cache block

Mnemonic

cbo.zero offset(base)

Encoding

31 20 19 15 14 12 1 7 6)

® 8 8 © 68 8 8 6 8 1 8 © rst ® 1 06|/06 6 8 6 [0 0 & 1 1 1 1
CBO.ZERO base CBO MISC-MEM

Description

A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block that contains the address specified in rs1. It is not required that rs7 is aligned to the size of a
cache block. On faults, the faulting virtual address is considered to be the value in rs1, rather than
the base address of the cache block. An implementation may or may not update the entire set of
bytes atomically.

The assembly offset operand may be omitted. If it isn’t then any expression that computes the offset
shall evaluate to zero.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.7. Instructions | Page 118

Operation

TODO

20.7.5. prefetch.i

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by an instruction fetch in the
near future

Mnemonic
prefetch.i offset(base)

Encoding

31 25 24 20 19 15 14 12 1 7 6]
imm[11:5] ® 0 8 0 © rsi 11 0|0 0 0 0 0|0 0 1 0 O 1 1
offset[11:5] PREFETCH.I base ORI offset[4:0] OP-IMM

Description

A prefetch.i instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rs7 and the sign-extended offset encoded in imm[11:0], where
imm[4:0] equals 0bee00680, is likely to be accessed by an instruction fetch in the near future.

An implementation may opt to cache a copy of the cache block in a cache accessed
0 by an instruction fetch in order to improve memory access latency, but this behavior
is not required.

Operation

T0DO

20.7.6. prefetch.r

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data read in the near
future

Mnemonic
prefetch.r offset(base)

Encoding

31 25 24 20 19 15 14 12 N1 7 6]
imm[11:5] O 0 0 0 1 rsi 1 1 0|0 08 0 O (60 0 1 @ 8 1 1
offset[11:5] PREFETCH.R base ORI offset[4:0] OP-IMM

The RISC-V Instruction Set Manual Volume I | © RISC-V International

20.7. Instructions | Page 119

Description

A prefetch.r instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rs7 and the sign-extended offset encoded in imm/[71:0], where
imm[4:0] equals ebeeees, is likely to be accessed by a data read (i.e. load) in the near future.

An implementation may opt to cache a copy of the cache block in a cache accessed
by a data read in order to improve memory access latency, but this behavior is not
required.

Operation

TODO

20.7.7. prefetch.w

Synopsis

Provide a HINT to hardware that a cache block is likely to be accessed by a data write in the near
future

Mnemonic

prefetch.w offset(base)

Encoding

31 25 24 20 19 15 14 12 1M 7 6)
imm[11:5] 8 0 0 1 1 rsi 1 1 0/0 8 0 0 (60 6 1 06 8 1 1
offset[11:5] PREFETCH.W base ORI offset[4:0] OP-IMM

Description

A prefetch.w instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rs7 and the sign-extended offset encoded in imm/[71:0], where
imm[4:0] equals ebeeees, is likely to be accessed by a data write (i.e. store) in the near future.

An implementation may opt to cache a copy of the cache block in a cache accessed
by a data write in order to improve memory access latency, but this behavior is not
required.

Operation

TODO

The RISC-V Instruction Set Manual Volume I | © RISC-V International

21.1. F Register State | Page 120

Chapter 21. "F" Extension for Single-Precision Floating-Point,
Version 2.2

This chapter describes the standard instruction-set extension for single-precision floating-point, which
is named "F" and adds single-precision floating-point computational instructions compliant with the
IEEE 754-2008 arithmetic standard (ANSI/IEEE Std 754-2008, IEEE Standard for Floating-Point
Arithmetic, 2008). The F extension depends on the "Zicsr" extension for control and status register
access.

21.1. F Register State

The F extension adds 32 floating-point registers, fo-31, each 32 bits wide, and a floating-point control
and status register fcsr, which contains the operating mode and exception status of the floating-point
unit. This additional state is shown in Table 25. We use the term FLEN to describe the width of the
floating-point registers in the RISC-V ISA, and FLEN=32 for the F single-precision floating-point
extension. Most floating-point instructions operate on values in the floating-point register file.
Floating-point load and store instructions transfer floating-point values between registers and memory.
Instructions to transfer values to and from the integer register file are also provided.

We considered a unified register file for both integer and floating-point values as this
simplifies software register allocation and calling conventions, and reduces total user
state. However, a split organization increases the total number of registers
o accessible with a given instruction width, simplifies provision of enough regfile ports
for wide superscalar issue, supports decoupled floating-point-unit architectures, and
simplifies use of internal floating-point encoding techniques. Compiler support and
calling conventions for split register file architectures are well understood, and using
dirty bits on floating-point register file state can reduce context-switch overhead.

Table 25. RISC-V standard F extension single-precision floating-point state
FLEN-1 0
fo
f1
f2
f3
f4
f5
f6
f7
f8
f9
10
f11
f12
13
f14

15

The RISC-V Instruction Set Manual Volume I | © RISC-V International

21.2. Floating-Point Control and Status Register | Page 121

FLEN-1 [

f16
f17

f18
f19
f20
f21

f22
f23
f24
f25
f26
f27
f28
f29
f30
31

FLEN
31]

fesr

32

21.2. Floating-Point Control and Status Register

The floating-point control and status register, fcsr, is a RISC-V control and status register (CSR). It is a
32-bit read/write register that selects the dynamic rounding mode for floating-point arithmetic
operations and holds the accrued exception flags, as shown in Floating-Point Control and Status
Register.

31 8 7 5 4 3 2 1 o
| Reserved |Round1’ng Mode| NV | Dz | OF | UF | NX |
24 3 1 1 1 1 1

Figure 2. Floating-point control and status register

The fcsr register can be read and written with the FRCSR and FSCSR instructions, which are assembler
pseudoinstructions built on the underlying CSR access instructions. FRCSR reads fcsr by copying it
into integer register rd. FSCSR swaps the value in fcsr by copying the original value into integer
register rd, and then writing a new value obtained from integer register rs7 into fcsr.

The fields within the fcsr can also be accessed individually through different CSR addresses, and
separate assembler pseudoinstructions are defined for these accesses. The FRRM instruction reads
the Rounding Mode field frm (fcsr bits 7—5) and copies it into the least-significant three bits of integer
register rd, with zero in all other bits. FSRM swaps the value in frm by copying the original value into
integer register rd, and then writing a new value obtained from the three least-significant bits of
integer register rs7into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued Exception
Flags field fflags (fcsr bits 4—0).

The RISC-V Instruction Set Manual Volume I | © RISC-V International

21.2. Floating-Point Control and Status Register | Page 122

Bits 31—8 of the fcsr are reserved for other standard extensions. If these extensions are not present,
implementations shall ignore writes to these bits and supply a zero value when read. Standard software
should preserve the contents of these bits.

Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic
rounding mode held in frm. Rounding modes are encoded as shown in Table 26. A value of 111 in the
instruction’s rm field selects the dynamic rounding mode held in frm. The behavior of floating-point
instructions that depend on rounding mode when executed with a reserved rounding mode is reserved,
including both static reserved rounding modes (101-110) and dynamic reserved rounding modes (101-
111). Some instructions, including widening conversions, have the rm field but are nevertheless
mathematically unaffected by the rounding mode; software should set their rm field to RNE (800) but
implementations must treat the rm field as usual (in particular, with regard to decoding legal vs.
reserved encodings).

Table 26. Rounding mode encoding.

Rounding Mnemoni Meaning

Mode c
000 RNE Round to Nearest, ties to Even
001 RTZ Round towards Zero
010 RDN Round Down (towards —«)
011 RUP Round Up (towards +)
100 RMM Round to Nearest, ties to Max Magnitude
101 Reserved for future use.
110 Reserved for future use.
m DYN In instruction’s rm field, selects dynamic rounding mode; In Rounding Mode register,

reserved.

The C99 language standard effectively mandates the provision of a dynamic
rounding mode register. In typical implementations, writes to the dynamic rounding
mode CSR state will serialize the pipeline. Static rounding modes are used to
implement specialized arithmetic operations that often have to switch frequently
between different rounding modes.

o The ratified version of the F spec mandated that an illegal-instruction exception was
raised when an instruction was executed with a reserved dynamic rounding mode.
This has been weakened to reserved, which matches the behavior of static rounding-
mode instructions. Raising an illegal-instruction exception is still valid behavior when
encountering a reserved encoding, so implementations compatible with the ratified
spec are compatible with the weakened spec.

The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software, as shown in Table 27. The base RISC-V
ISA does not support generating a trap on the setting of a floating-point exception flag.

Table 27. Accrued exception flag encoding.

Flag Mnemonic Flag Meaning

NV Invalid Operation

The RISC-V Instruction Set Manual Volume I | © RISC-V International

21.3. NaN Generation and Propagation | Page 123

Flag Mnemonic Flag Meaning

Dz Divide by Zero
OF Overflow

UF Underflow

NX Inexact

As allowed by the standard, we do not support traps on floating-point exceptions in
the F extension, but instead require explicit checks of the flags in software. We

0 considered adding branches controlled directly by the contents of the floating-point
accrued exception flags, but ultimately chose to omit these instructions to keep the
ISA simple.

21.3. NaN Generation and Propagation

Except when otherwise stated, if the result of a floating-point operation is NaN, it is the canonical NaN.
The canonical NaN has a positive sign and all significand bits clear except the MSB, a.k.a. the quiet bit.
For single-precision floating-point, this corresponds to the pattern ox7fcoeeee.

We considered propagating NaN payloads, as is recommended by the standard, but
this decision would have increased hardware cost. Moreover, since this feature is
optional in the standard, it cannot be used in portable code.

o Implementors are free to provide a NalN payload propagation scheme as a
nonstandard extension enabled by a nonstandard operating mode. However, the
canonical NaN scheme described above must always be supported and should be the
default mode.

We require implementations to return the standard-mandated default values in the
case of exceptional conditions, without any further intervention on the part of user-
level software (unlike the Alpha ISA floating-point trap barriers). We believe full
o hardware handling of exceptional cases will become more common, and so wish to

avoid complicating the user-level ISA to optimize other approaches.
Implementations can always trap to machine-mode software handlers to provide
exceptional default values.

21.4. Subnormal Arithmetic

Operations on subnormal numbers are handled in accordance with the IEEE 754-2008 standard.

In the parlance of the IEEE standard, tininess is detected after rounding.

o Detecting tininess after rounding results in fewer spurious underflow signals.

21.5. Single-Precision Load and Store Instructions

Floating-point loads and stores use the same base+offset addressing mode as the integer base ISAs,
with a base address in register rs7 and a 12-bit signed byte offset. The FLW instruction loads a single-

The RISC-V Instruction Set Manual Volume I | © RISC-V International

21.6. Single-Precision Floating-Point Computational Instructions | Page 124

precision floating-point value from memory into floating-point register rd. FSW stores a single-
precision value from floating-point register rs2 to memory.

31 20 19 15 14 12 1 7 6]
imm[11:0] rsi width rd opcode
12 5 3 5 7
offset[11:0] base w dest LOAD-FP
31 25 24 20 19 15 14 12 1 7 6]
imm[11:5] rs2 rsi width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base w offset[4:0] STORE-FP

FLW and FSW are only guaranteed to execute atomically if the effective address is naturally aligned.

FLW and FSW do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

As described in Section 2.6, the execution environment defines whether misaligned floating-point
loads and stores are handled invisibly or raise a contained or fatal trap.

21.6. Single-Precision Floating-Point Computational Instructions

Floating-point arithmetic instructions with one or two source operands use the R-type format with the
OP-FP major opcode. FADD.S and FMUL.S perform single-precision floating-point addition and
multiplication respectively, between rs7 and rs2. FSUB.S performs the single-precision floating-point
subtraction of rs2 from rs1. FDIV.S performs the single-precision floating-point division of rs7 by rs2.
FSQRT.S computes the square root of rs1. In each case, the result is written to rd.

The 2-bit floating-point format field fmt is encoded as shown in Table 28. It is set to S (80) for all
instructions in the F extension.

Table 28. Format field encoding

fmt field Mnemonic Meaning

00 S 32-bit single-precision
(N D 64-bit double-precision
10 H 16-bit half-precision

1 Q 128-bit quad-precision

All floating-point operations that perform rounding can select the rounding mode using the rm field
with the encoding shown in Table 26.

Floating-point minimum-number and maximum-number instructions FMIN.S and FMAX.S write,
respectively, the smaller or larger of rs7 and rs2 to rd. For the purposes of these instructions only, the
value —-0.0 is considered to be less than the value +0.0. If both inputs are NaNs, the result is the
canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN inputs
set the invalid operation exception flag, even when the result is not NaN.

Note that in version 2.2 of the F extension, the FMIN.S and FMAX.S instructions were
o amended to implement the proposed IEEE 754-201x minimumNumber and
maximumNumber operations, rather than the IEEE 754-2008 minNum and maxNum

The RISC-V Instruction Set Manual Volume I | © RISC-V International

21.6. Single-Precision Floating-Point Computational Instructions | Page 125

operations. These operations differ in their handling of signaling NaNs.

31 27 26 25 24 20 19 15 14 12 1 7 6]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FADD/FSUB S src2 srcl RM dest OP-FP
FMUL/FDIV S src2 srci RM dest OP-FP
FSQRT S o src RM dest OP-FP
FMIN-MAX S src2 srcil MIN/MAX dest OP-FP

Floating-point fused multiply-add instructions require a new standard instruction format. R4-type
instructions specify three source registers (rs7, rs2, and rs3) and a destination register (rd). This format
is only used by the floating-point fused multiply-add instructions.

FMADD.S multiplies the values in rs7 and rs2, adds the value in rs3, and writes the final result to rd.
FMADD.S computes (rs1 x rs2) + rs3.

FMSUB.S multiplies the values in rs7 and rs2, subtracts the value in rs3, and writes the final result to rd.
FMSUB.S computes (rs7 x rs2) — rs3.

FNMSUB.S multiplies the values in rs7 and rs2, negates the product, adds the value in rs3, and writes
the final result to rd. FNMSUB.S computes -(rs7 x rs2) + rs3.

FNMADD.S multiplies the values in rs7 and rs2, negates the product, subtracts the value in rs3, and
writes the final result to rd. FNMADD.S computes -(rs7 x rs2) — rs3.

The FNMSUB and FNMADD instructions are counterintuitively named, owing to the
naming of the corresponding instructions in MIPS-IV. The MIPS instructions were
defined to negate the sum, rather than negating the product as the RISC-V
instructions do, so the naming scheme was more rational at the time. The two
e definitions differ with respect to signed-zero results. The RISC-V definition matches
the behavior of the x86 and ARM fused multiply-add instructions, but unfortunately
the RISC-V FNMSUB and FNMADD instruction names are swapped as compared to
x86, whereas the RISC-V FMSUB and FNMSUB instruction names are swapped as

compared to ARM.
31 27 26 25 24 20 19 15 14 122 11 7 6]
rs3 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
src3 S src2 srci RM dest F[IN]JMADD/F[NIMSUB

The fused multiply-add (FMA) instructions consume a large part of the 32-bit
instruction encoding space. Some alternatives considered were to restrict FMA to
only use dynamic rounding modes, but static rounding modes are useful in code that

o exploits the lack of product rounding. Another alternative would have been to use rd
to provide rs3, but this would require additional move instructions in some common
sequences. The current design still leaves a large portion of the 32-bit encoding
space open while avoiding having FMA be non-orthogonal.

The fused multiply-add instructions must set the invalid operation exception flag when the
multiplicands are « and zero, even when the addend is a quiet NaN.

e The IEEE 754-2008 standard permits, but does not require, raising the invalid

The RISC-V Instruction Set Manual Volume I | © RISC-V International

21.7. Single-Precision Floating-Point Conversion and Move Instructions | Page 126

exception for the operation « x 0 + gNaN.

21.7. Single-Precision Floating-Point Conversion and Move Instructions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the OP-
FP major opcode space. FCVT.W.S or FCVT.L.S converts a floating-point number in floating-point
register rs1 to a signed 32-bit or 64-bit integer, respectively, in integer register rd. FCVT.S.\W or
FCVT.S.L converts a 32-bit or 64-bit signed integer, respectively, in integer register rs7 into a floating-
point number in floating-point register rd. FCVT.WU.S, FCVT.LU.S, FCVT.S.WU, and FCVT.S.LU variants
convert to or from unsigned integer values. For XLEN>32, FCVT.W[U].S sign-extends the 32-bit result
to the destination register width. FCVT.L[UL.S and FCVT.S.L[U] are RV64-only instructions. If the
rounded result is not representable in the destination format, it is clipped to the nearest value and the
invalid flag is set. Table 29 gives the range of valid inputs for FCVT.int.S and the behavior for invalid
inputs.

All floating-point to integer and integer to floating-point conversion instructions round according to
the rm field. A floating-point register can be initialized to floating-point positive zero using FCVT.S.W
rd, xe, which will never set any exception flags.

Table 29. Domains of float-to-integer conversions and behavior for invalid inputs

FCVT.W.S FCVT.WU.S FCVT.L.S FCVT.LU.S

Minimum valid input (after rounding) _931 o —063 o
Maximum valid input (after rounding) 2311 2%2_1 263 _1 264 _1
Output for out-of-range negative input _p31 0 063 0
Output for —w _9p31 o —63 o
Output for out-of-range positive input 231 _1 232 _1 263 _1 264 1
Output for +% or NaN 2311 2321 263 1 2641

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs
from the operand value and the Invalid exception flag is not set.

31 27 26 25 24 20 19 15 14 12 11 7 6]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCVT.int.fmt S WIU]/L[UID src RM dest OP-FP
FCVT.fmt.int S WIUJ/L[U] src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.S, FSGNJN.S, and FSGNJX.S,
produce a result that takes all bits except the sign bit from rs7. For FSGNJ, the result’s sign bit is rs2's
sign bit; for FSGNJN, the result’s sign bit is the opposite of rs2's sign bit; and for FSGNJX, the sign bit
is the XOR of the sign bits of rs7 and rs2. Sign-injection instructions do not set floating-point
exception flags, nor do they canonicalize NaNs. Note, FSGNJ.S rx, ry, ry moves ry to rx (assembler
pseudoinstruction FMV.S rx, ry); FSGNJN.S rx, ry, ry moves the negation of ry to rx (assembler
pseudoinstruction FNEG.S rx, ry); and FSGNJX.S rx, ry, ry moves the absolute value of ry to rx
(assembler pseudoinstruction FABS.S rx, ry).

31 27 26 25 24 20 19 15 14 12 11 7 6]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FSGNJ S src2 srci JINJ/JX dest OP-FP

The RISC-V Instruction Set Manual Volume I | © RISC-V International

21.8. Single-Precision Floating-Point Compare Instructions | Page 127

The sign-injection instructions provide floating-point MV, ABS, and NEG, as well as
supporting a few other operations, including the IEEE copySign operation and sign
manipulation in transcendental math function libraries. Although MV, ABS, and NEG

o only need a single register operand, whereas FSGNJ instructions need two, it is
unlikely most microarchitectures would add optimizations to benefit from the
reduced number of register reads for these relatively infrequent instructions. Even in
this case, a microarchitecture can simply detect when both source registers are the
same for FSGNJ instructions and only read a single copy.

Instructions are provided to move bit patterns between the floating-point and integer registers.
FMV.X.W moves the single-precision value in floating-point register rs7 represented in IEEE 754-2008
encoding to the lower 32 bits of integer register rd. The bits are not modified in the transfer, and in
particular, the payloads of non-canonical NaNs are preserved. For RV64, the higher 32 bits of the
destination register are filled with copies of the floating-point number’s sign bit.

FMV.W.X moves the single-precision value encoded in IEEE 754-2008 standard encoding from the
lower 32 bits of integer register rs7 to the floating-point register rd. The bits are not modified in the
transfer, and in particular, the payloads of non-canonical NaNs are preserved.

The FMV.W.X and FMV.X.W instructions were previously called FMV.S.X and FMV.X.S.
o The use of W is more consistent with their semantics as an instruction that moves 32

bits without interpreting them. This became clearer after defining NaN-boxing. To

avoid disturbing existing code, both the W and S versions will be supported by tools.

31 27 26 25 24 20 19 15 14 12 1 7 6]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FMV.X.W S o src 000 dest OP-FP
FMV.W.X S 0 src 000 dest OP-FP

The base floating-point ISA was defined so as to allow implementations to employ an
internal recoding of the floating-point format in registers to simplify handling of
subnormal values and possibly to reduce functional unit latency. To this end, the F

o extension avoids representing integer values in the floating-point registers by
defining conversion and comparison operations that read and write the integer
register file directly. This also removes many of the common cases where explicit
moves between integer and floating-point registers are required, reducing instruction
count and critical paths for common mixed-format code sequences.

21.8. Single-Precision Floating-Point Compare Instructions

Floating-point compare instructions (FEQ.S, FLT.S, FLE.S) perform the specified comparison between
floating-point registers (=, <, =) writing 1 to the integer register rd if the condition holds, and ®
otherwise.

FLT.S and FLE.S perform what the IEEE 754-2008 standard refers to as signaling comparisons: that is,
they set the invalid operation exception flag if either input is NaN. FEQ.S performs a quiet comparison:
it only sets the invalid operation exception flag if either input is a signaling NaN. For all three
instructions, the result is O if either operand is NaN.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

21.9. Single-Precision Floating-Point Classify Instruction | Page 128

31 27 26 25 24 20 19 15 14 12 11 7 6]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCMP S src2 srci EQ dest OP-FP
LT
LE

The F extension provides a <= comparison, whereas the base ISAs provide a =
branch comparison. Because = can be synthesized from = and vice-versa, there
is no performance implication to this inconsistency, but it is nevertheless an
unfortunate incongruity in the ISA.

21.9. Single-Precision Floating-Point Classify Instruction

The FCLASS.S instruction examines the value in floating-point register rs7 and writes to integer
register rd a 10-bit mask that indicates the class of the floating-point number. The format of the mask
is described in Table 30. The corresponding bit in rd will be set if the property is true and clear
otherwise. All other bits in rd are cleared. Note that exactly one bit in rd will be set. FCLASS.S does not

set the floating-point exception flags.

31 27 26 25 24 20 19 15 14 12 11 7 6]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCLASS S] src 001 dest OP-FP

Table 30. Format of result of FCLASS instruction.
rd bit Meaning
O rsilis —w.

1 rs1is a negative normal number.

2 rs1is a negative subnormal number.
3 rslis —0.
4 rslis +0.

5 rs1is a positive subnormal number.
6 rs1is a positive normal number.

7 rslis +o.

8 rs1is a signaling NaN.

9 rs1is a quiet NaN.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

22.1. D Register State | Page 129

Chapter 22. "D" Extension for Double-Precision Floating-Point,
Version 2.2

This chapter describes the standard double-precision floating-point instruction-set extension, which is
named "D" and adds double-precision floating-point computational instructions compliant with the
IEEE 754-2008 arithmetic standard. The D extension depends on the base single-precision instruction
subset F.

22.1. D Register State

The D extension widens the 32 floating-point registers, fo-f31, to 64 bits (FLEN=64 in Table 25. The f
registers can now hold either 32-bit or 64-bit floating-point values as described below in Section 22.2.

FLEN can be 32, 64, or 128 depending on which of the F, D, and Q extensions are
o supported. There can be up to four different floating-point precisions supported,
including H, F, D, and Q.

22.2. NaN Boxing of Narrower Values

When multiple floating-point precisions are supported, then valid values of narrower n-bit types,
n<FLEN, are represented in the lower n bits of an FLEN-bit NaN value, in a process termed NaN-
boxing. The upper bits of a valid NaN-boxed value must be all 1s. Valid NaN-boxed n-bit values
therefore appear as negative quiet NaNs (gNaNs) when viewed as any wider m-bit value, n < m = FLEN.
Any operation that writes a narrower result to an 'f' register must write all 1s to the uppermost FLEN-n
bits to yield a legal NaN-boxedvalue.

Software might not know the current type of data stored in a floating-point register
but has to be able to save and restore the register values, hence the result of using

o wider operations to transfer narrower values has to be defined. A common case is for
callee-saved registers, but a standard convention is also desirable for features
including varargs, user-level threading libraries, virtual machine migration, and
debugging.

Floating-point n-bit transfer operations move external values held in IEEE standard formats into and
out of the f registers, and comprise floating-point loads and stores (FLn/FSn) and floating-point move
instructions (FMV.n.X/FMV.X.n). A narrower n-bit transfer, n<FLEN, into the f registers will create a valid
NaN-boxed value. A narrower n-bit transfer out of the floating-point registers will transfer the lower n
bits of the register ignoring the upper FLEN-n bits.

Apart from transfer operations described in the previous paragraph, all other floating-point operations
on narrower n-bit operations, n<FLEN, check if the input operands are correctly NaN-boxed, i.e., all
upper FLEN-n bits are 1. If so, the n least-significant bits of the input are used as the input value,
otherwise the input value is treated as an n-bit canonical NaN.

Earlier versions of this document did not define the behavior of feeding the results of
narrower or wider operands into an operation, except to require that wider saves and
o restores would preserve the value of a narrower operand. The new definition removes
this implementation-specific behavior, while still accommodating both non-recoded
and recoded implementations of the floating-point unit. The new definition also helps

The RISC-V Instruction Set Manual Volume I | © RISC-V International

22.3. Double-Precision Load and Store Instructions | Page 130

catch software errors by propagating NaNs if values are used incorrectly.

Non-recoded implementations unpack and pack the operands to IEEE standard
format on the input and output of every floating-point operation. The NaN-boxing
cost to a non-recoded implementation is primarily in checking if the upper bits of a
narrower operation represent a legal NaN-boxed value, and in writing all 1s to the
upper bits of a result.

Recoded implementations use a more convenient internal format to represent
floating-point values, with an added exponent bit to allow all values to be held
normalized. The cost to the recoded implementation is primarily the extra tagging
needed to track the internal types and sign bits, but this can be done without adding
new state bits by recoding NaNs internally in the exponent field. Small modifications
are needed to the pipelines used to transfer values in and out of the recoded format,
but the datapath and latency costs are minimal. The recoding process has to handle
shifting of input subnormal values for wide operands in any case, and extracting the
NaN-boxed value is a similar process to normalization except for skipping over
leading-1 bits instead of skipping over leading-0® bits, allowing the datapath muxing
to be shared.

22.3. Double-Precision Load and Store Instructions

The FLD instruction loads a double-precision floating-point value from memory into floating-point
register rd. FSD stores a double-precision value from the floating-point registers to memory.

o The double-precision value may be a NaN-boxed single-precision value.
31 20 19 15 14 12 11 7 6]
imm[11:0] rsi width rd opcode
12 5 3 5 7
offset[11:0] base D dest LOAD-FP
31 25 24 20 19 15 14 12 1 7 6 o
imm[11:5] rs2 rsi width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base D offset[4:0] STORE-FP

FLD and FSD are only guaranteed to execute atomically if the effective address is naturally aligned and
XLEN=64.

FLD and FSD do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.
22.4. Double-Precision Floating-Point Computational Instructions

The double-precision floating-point computational instructions are defined analogously to their single-
precision counterparts, but operate on double-precision operands and produce double-precision
results.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

22.5. Double-Precision Floating-Point Conversion and Move Instructions | Page 131

31 27 26 25 24 20 19 15 14 12 11]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FADD/FSUB D src2 srcil RM dest OP-FP
FMUL/FDIV D src2 srcl RM dest OP-FP
FMIN-MAX D src2 srci MIN/MAX dest OP-FP
FSQRT D o src RM dest OP-FP
31 27 26 25 24 20 19 15 14 12 1]
rs3 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
src3 D src2 src RM dest F[IN]JMADD/F[NIMSUB

22.5. Double-Precision Floating-Point Conversion and Move Instructions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the OP-
FP major opcode space. FCVT.W.D or FCVT.L.D converts a double-precision floating-point number in
floating-point register rs7 to a signed 32-bit or 64-bit integer, respectively, in integer register rd.
FCVT.D.W or FCVT.D.L converts a 32-bit or 64-bit signed integer, respectively, in integer register rsi
into a double-precision floating-point number in floating-point register rd. FCVT.WU.D, FCVT.LU.D,
FCVT.D.WU, and FCVT.D.LU variants convert to or from unsigned integer values. For RV64,
FCVT.W[U].D sign-extends the 32-bit result. FCVT.L[U].D and FCVT.D.L[U] are RV64-only instructions.
The range of valid inputs for FCVT.int.D and the behavior for invalid inputs are the same as for FCVT.
int.S.

All floating-point to integer and integer to floating-point conversion instructions round according to
the rm field. Note FCVT.D.W[U] always produces an exact result and is unaffected by rounding mode.

31 27 26 25 24 20 19 15 14 12 11]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCVT.int.D D WIU]/L[U] src RM dest OP-FP
FCVT.D.int D WIU]/L[U] src RM dest OP-FP

The double-precision to single-precision and single-precision to double-precision conversion
instructions, FCVT.S.D and FCVT.D.S, are encoded in the OP-FP major opcode space and both the
source and destination are floating-point registers. The rs2 field encodes the datatype of the source,
and the fmt field encodes the datatype of the destination. FCVT.S.D rounds according to the RM field;

FCVT.D.S will

never round.

31 27 26 25 24 20 19 15 14 12 11]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCVT.S.D S D src RM dest OP-FP
FCVT.D.S D S src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.D, FSGNJN.D, and FSGNJX.D are

defined analogously to the single-precision sign-injection instruction.

31 27 26 25 24 20 19 15 14 12 1]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FSGNJ D src2 srci JIN]/JIX dest OP-FP

For XLEN=64 only, instructions are provided to move bit patterns between the floating-point and
integer registers. FMV.X.D moves the double-precision value in floating-point register rs7 to a

The RISC-V Instruction Set Manual Volume I | © RISC-V International

22.6. Double-Precision Floating-Point Compare Instructions | Page 132

representation in IEEE 754-2008 standard encoding in integer register rd. FMV.D.X moves the double-
precision value encoded in IEEE 754-2008 standard encoding from the integer register rs1 to the
floating-point register rd.

FMV.X.D and FMV.D.X do not modify the bits being transferred; in particular, the payloads of non-

canonical NaNs are preserved.

31 27 26 25 24 20 19 15 14 12 1
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FMV.X.D D] src 000 dest OP-FP
FMV.D.X D o src 000 dest OP-FP

Early versions of the RISC-V ISA had additional instructions to allow RV32 systems
to transfer between the upper and lower portions of a 64-bit floating-point register
and an integer register. However, these would be the only instructions with partial
register writes and would add complexity in implementations with recoded floating-
point or register renaming, requiring a pipeline read-modify-write sequence. Scaling
up to handling quad-precision for RV32 and RV64 would also require additional
instructions if they were to follow this pattern. The ISA was defined to reduce the
number of explicit int-float register moves, by having conversions and comparisons
write results to the appropriate register file, so we expect the benefit of these
instructions to be lower than for other ISAs.

We note that for systems that implement a 64-bit floating-point unit including fused
multiply-add support and 64-bit floating-point loads and stores, the marginal
hardware cost of moving from a 32-bit to a 64-bit integer datapath is low, and a
software ABI supporting 32-bit wide address-space and pointers can be used to
avoid growth of static data and dynamic memory traffic.

22.6. Double-Precision Floating-Point Compare Instructions

The double-precision floating-point compare instructions are defined analogously to their single-
precision counterparts, but operate on double-precision operands.

31 27 26 25 24 20 19 15 14 12 11
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCMP D src2 srci EQ/LT/LE dest OP-FP

22.7. Double-Precision Floating-Point Classify Instruction

The double-precision floating-point classify instruction, FCLASS.D, is defined analogously to its single-

precision counterpart, but operates on double-precision operands.

31 27 26 25 24 20 19 15 14 12 1
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCLASS D] src 1 dest OP-FP

The RISC-V Instruction Set Manual Volume I | © RISC-V International

23.1. Quad-Precision Load and Store Instructions | Page 133

Chapter 23. "Q" Extension for Quad-Precision Floating-Point,
Version 2.2

This chapter describes the Q standard extension for 128-bit quad-precision binary floating-point
instructions compliant with the IEEE 754-2008 arithmetic standard. The quad-precision binary
floating-point instruction-set extension is named "Q"; it depends on the double-precision floating-point
extension D. The floating-point registers are now extended to hold either a single, double, or quad-
precision floating-point value (FLEN=128). The NaN-boxing scheme described in Section 22.2 is now
extended recursively to allow a single-precision value to be NaN-boxed inside a double-precision value
which is itself NaN-boxed inside a quad-precision value.

23.1. Quad-Precision Load and Store Instructions

New 128-bit variants of LOAD-FP and STORE-FP instructions are added, encoded with a new value for
the funct3 width field.

31 20 19 15 14 12 N 7 6)
imm[11:0] rsi width rd opcode
12 5 3 5 7
offset[11:0] base Q dest LOAD-FP
31 25 24 20 19 15 14 12 1 7 6 o
imm[11:5] rs2 rsi width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base Q offset[4:0] STORE-FP

FLQ and FSQ are only guaranteed to execute atomically if the effective address is naturally aligned
and XLEN=128.

FLQ and FSQ do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

23.2. Quad-Precision Computational Instructions

A new supported format is added to the format field of most instructions, as shown in Table 31

Table 31. Format field encoding.

fmt field Mnemonic Meaning

00 S 32-bit single-precision
(N D 64-bit double-precision
10 H 16-bit half-precision

1 Q 128-bit quad-precision

The quad-precision floating-point computational instructions are defined analogously to their double-
precision counterparts, but operate on quad-precision operands and produce quad-precision results.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

23.3. Quad-Precision Convert and Move Instructions | Page 134

31 27 26 25 24 20 19 15 14 12 11]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FADD/FSUB Q src2 srci RM dest OP-FP
FMUL/FDIV Q src2 srcl RM dest OP-FP
FMIN-MAX Q src2 srcil MIN/MAX dest OP-FP
FSQRT Q o src RM dest OP-FP
31 27 26 25 24 20 19 15 14 12 1 7 6]
rs3 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
src3 Q src2 srcl RM dest F[IN]JMADD/F[NIMSUB

23.3. Quad-Precision Convert and Move Instructions

New floating-point-to-integer and integer-to-floating-point conversion instructions are added. These
instructions are defined analogously to the double-precision-to-integer and integer-to-double-
precision conversion instructions. FCVT.W.Q or FCVT.L.Q converts a quad-precision floating-point
number to a signed 32-bit or 64-bit integer, respectively. FCVT.Q.W or FCVT.Q.L converts a 32-bit or
64-bit signed integer, respectively, into a quad-precision floating-point number. FCVT.WU.Q,
FCVT.LU.Q, FCVT.Q.WU, and FCVT.Q.LU variants convert to or from unsigned integer values.
FCVT.L[U].Q and FCVT.Q.L[U] are RV64-only instructions. Note FCVT.Q.L[U] always produces an exact
result and is unaffected by rounding mode.

31 27 26 25 24 20 19 15 14 12 1 7 6 o
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCVT.int.Q Q WI[UJ/L[U] src RM dest OP-FP
FCVT.Q.int Q WIUJ/L[U] src RM dest OP-FP

New floating-point-to-floating-point conversion instructions are added. These instructions are defined
analogously to the double-precision floating-point-to-floating-point conversion instructions. FCVT.S.Q
or FCVT.Q.S converts a quad-precision floating-point number to a single-precision floating-point
number, or vice-versa, respectively. FCVT.D.Q or FCVT.Q.D converts a quad-precision floating-point
number to a double-precision floating-point number, or vice-versa, respectively.

31 27 26 25 24 20 19 15 14 122 11 7 6]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCVT.S.Q S Q src RM dest OP-FP
FCVT.Q.S Q S src RM dest OP-FP
FCVT.D.Q D Q src RM dest OP-FP
FCVT.Q.D Q D Src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.Q, FSGNJN.Q, and
defined analogously to the double-precision sign-injection instruction.

FSGNJX.Q are

31 27 26 25 24 20 19 15 14 12 11]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FSGNJ Q src2 srcl JIN]/JIX dest OP-FP

FMV.X.Q and FMV.Q.X instructions are not provided in RV32 or RV64, so quad-precision bit patterns
must be moved to the integer registers via memory.

() RV128 will support FMV.X.Q and FMV.Q.X in the Q extension.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

23.5. Quad-Precision Floating-Point Classify Instruction | Page 135

23.4. Quad-Precision Floating-Point Compare Instructions

The quad-precision floating-point compare instructions are defined analogously to their double-
precision counterparts, but operate on quad-precision operands.

31 27 26 25 24 20 19 15 14 12 11 7 6]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCMP Q src2 srcl EQ/LT/LE dest OP-FP

23.5. Quad-Precision Floating-Point Classify Instruction

The quad-precision floating-point classify instruction, FCLASS.Q, is defined analogously to its double-
precision counterpart, but operates on quad-precision operands.

31 27 26 25 24 20 19 15 14 12 1 7 6]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCLASS Q o src 001 dest OP-FP

The RISC-V Instruction Set Manual Volume I | © RISC-V International

24.1. Half-Precision Load and Store Instructions | Page 136

Chapter 24. "Zfh" and "Zfhmin" Extensions for Half-Precision
Floating-Point, Version 1.0

This chapter describes the Zfh standard extension for 16-bit half-precision binary floating-point
instructions compliant with the IEEE 754-2008 arithmetic standard. The Zfh extension depends on the
single-precision floating-point extension, F. The NaN-boxing scheme described in Section 22.2 is
extended to allow a half-precision value to be NaN-boxed inside a single-precision value (which may
be recursively NaN-boxed inside a double- or quad-precision value when the D or Q extension is
present).

This extension primarily provides instructions that consume half-precision operands
and produce half-precision results. However, it is also common to compute on half-
precision data using higher intermediate precision. Although this extension provides

e explicit conversion instructions that suffice to implement that pattern, future
extensions might further accelerate such computation with additional instructions
that implicitly widen their operands—e.q., half x half +single - single—or implicitly
narrow their results—e.g., half +single - half.

24.1. Half-Precision Load and Store Instructions

New 16-bit variants of LOAD-FP and STORE-FP instructions are added, encoded with a new value for
the funct3 width field.

31 20 19 15 14 12 N1 7 6]
imm[11:0] rsi width rd opcode
12 5 3 5 7
offset[11:0] base H dest LOAD-FP
31 25 24 20 19 15 14 12 1 7 6]
imm[11:5] rs2 rsi width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base H offset[4:0] STORE-FP

FLH and FSH are only guaranteed to execute atomically if the effective address is naturally aligned.

FLH and FSH do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved. FLH NaN-boxes the result written to rd, whereas FSH ignores all but the lower 16
bits in rs2.

24.2. Half-Precision Computational Instructions

A new supported format is added to the format field of most instructions, as shown in Table 32.

Table 32. Format field encoding.

fmt field Mnemonic Meaning

00 S 32-bit single-precision
01 D 64-bit double-precision
10 H 16-bit half-precision

1 Q 128-bit quad-precision

The RISC-V Instruction Set Manual Volume I | © RISC-V International

24.3. Half-Precision Conversion and Move Instructions | Page 137

The half-precision floating-point computational instructions are defined analogously to their single-
precision counterparts, but operate on half-precision operands and produce half-precision results.

31 27 26 25 24 20 19 15 14 12 11]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FADD/FSUB H src2 srcl RM dest OP-FP
FMUL/FDIV H src2 srci RM dest OP-FP
FMIN-MAX H src2 srci MIN/MAX dest OP-FP
FSQRT H] src RM dest OP-FP
31 27 26 25 24 20 19 15 14 12 1]
rs3 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
src3 H src2 srcil RM dest F[NJMADD/F[N]JMSUB

24.3. Half-Precision Conversion and Move Instructions

New floating-point-to-integer and integer-to-floating-point conversion instructions are added. These
instructions are defined analogously to the single-precision-to-integer and integer-to-single-precision
conversion instructions. FCVT.W.H or FCVT.L.H converts a half-precision floating-point number to a
signed 32-bit or 64-bit integer, respectively. FCVT.H.W or FCVT.H.L converts a 32-bit or 64-bit signed
integer, respectively, into a half-precision floating-point number. FCVT.WU.H, FCVT.LU.H, FCVT.H.WU,
and FCVT.H.LU variants convert to or from unsigned integer values. FCVT.L[U].H and FCVT.H.L[U] are
RV64-only instructions.

31 27 26 25 24 20 19 15 14 12 1 7 6 o
funct5 fmt rs2 rsi rm rd opcode
5 2 5) 5) 3 5 7
FCVT.intH H WIU]/L[U] src RM dest OP-FP
FCVT.H.int H WIUJ/L[U] src RM dest OP-FP

New floating-point-to-floating-point conversion instructions are added. These instructions are defined
analogously to the double-precision floating-point-to-floating-point conversion instructions. FCVT.S.H
or FCVT.H.S converts a half-precision floating-point number to a single-precision floating-point
number, or vice-versa, respectively. If the D extension is present, FCVT.D.H or FCVT.H.D converts a
half-precision floating-point number to a double-precision floating-point number, or vice-versa,
respectively. If the Q extension is present, FCVT.Q.H or FCVT.H.Q converts a half-precision floating-
point number to a quad-precision floating-point number, or vice-versa, respectively.

31 27 26 25 24 20 19 15 14 12 11]
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCVT.S.H S H src RM dest OP-FP
FCVT.H.S H S src RM dest OP-FP
FCVT.D.H D H src RM dest OP-FP
FCVT.H.D H D src RM dest OP-FP
FCVT.Q.H Q H src RM dest OP-FP
FCVT.H.Q H Q SRC RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.H, FSGNJN.H, and
defined analogously to the single-precision sign-injection instruction.

FSGNJX.H are

31 27 26 25 24 20 19 15 14 12 N1]
funct5 fmt rs2 rsi funct3 rd opcode
5 2 5 5 3 5 7
FSGNJ H src2 srci JINJ/JX dest OP-FP

The RISC-V Instruction Set Manual Volume I | © RISC-V International

24.4. Half-Precision Floating-Point Compare Instructions | Page 138

Instructions are provided to move bit patterns between the floating-point and integer registers.
FMV.X.H moves the half-precision value in floating-point register rs7 to a representation in IEEE 754-
2008 standard encoding in integer register rd, filling the upper XLEN-16 bits with copies of the
floating-point number’s sign bit.

FMV.H.X moves the half-precision value encoded in IEEE 754-2008 standard encoding from the lower
16 bits of integer register rs7 to the floating-point register rd, NaN-boxing the result.

FMV.X.H and FMV.H.X do not modify the bits being transferred; in particular, the payloads of non-

canonical NaNs are preserved.

31 27 26 25 24 20 19 15 14 12 1
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FMV.X.H H] src 000 dest OP-FP
FMV.H.X H o src 000 dest OP-FP

24.4. Half-Precision Floating-Point Compare Instructions

The half-precision floating-point compare instructions are defined analogously to their single-

precision counterparts, but operate on half-precision operands.

31 27 26 25 24 20 19 15 14 12 11
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCMP H src2 srci EQ/LT/LE dest OP-FP

24.5. Half-Precision Floating-Point Classify Instruction

The half-precision floating-point classify instruction, FCLASS.H, is defined analogously to its single-

precision counterpart, but operates on half-precision operands.

31 27 26 25 24 20 19 15 14 12 1M
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCLASS H] src 001 dest OP-FP

24.6. "Zfhmin" Standard Extension for Minimal Half-Precision Floating-Point

This section describes the Zfhmin standard extension, which provides minimal support for 16-bit half-
precision binary floating-point instructions. The Zfhmin extension is a subset of the Zfh extension,
consisting only of data transfer and conversion instructions. Like Zfh, the Zfhmin extension depends
on the single-precision floating-point extension, F. The expectation is that Zfhmin software primarily
uses the half-precision format for storage, performing most computation in higher precision.

The Zfhmin extension includes the following instructions from the Zfh extension: FLH, FSH, FMV.X.H,
FMV.H.X, FCVT.S.H, and FCVT.H.S. If the D extension is present, the FCVT.D.H and FCVT.H.D
instructions are also included. If the Q extension is present, the FCVT.Q.H and FCVT.H.Q instructions
are additionally included.

Zfhmin does not include the FSGNJ.H instruction, because it suffices to instead use
the FSGNJ.S instruction to move half-precision values between floating-point
registers.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

24.6. "Zfhmin" Standard Extension for Minimal Half-Precision Floating-Point | Page 139

Half-precision addition, subtraction, multiplication, division, and square-root
operations can be faithfully emulated by converting the half-precision operands to
single-precision, performing the operation using single-precision arithmetic, then
converting back to half-precision. (Roux, 2014) Performing half-precision fused
multiply-addition using this method incurs a 1-ulp error on some inputs for the RNE
and RMM rounding modes.

Conversion from 8- or 16-bit integers to half-precision can be emulated by first
converting to single-precision, then converting to half-precision. Conversion from 32-
bit integer can be emulated by first converting to double-precision. If the D extension
is not present and a 1-ulp error under RNE or RMM is tolerable, 32-bit integers can
be first converted to single-precision instead. The same remark applies to
conversions from 64-bit integers without the Q extension.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.1. Introduction | Page 140

Chapter 25. "BF16" Extensions for for BFloat16-precision
Floating-Point, Version 1.0

25.1. Introduction

When FP16 (officially called binary16) was first introduced by the IEEE-754 standard, it was just an
interchange format. It was intended as a space/bandwidth efficient encoding that would be used to
transfer information. This is in line with the Zfhmin extension.

However, there were some applications (notably graphics) that found that the smaller precision and
dynamic range was sufficient for their space. So, FP16 started to see some widespread adoption as an
arithmetic format. This is in line with the Zfh extension.

While it was not the intention of 754 to have FP16 be an arithmetic format, it is supported by the
standard. Even though the '754 committee recognized that FP16 was gaining popularity, the committee
decided to hold off on making it a basic format in the 2019 release. This means that a '754 compliant
implementation of binary floating point, which needs to support at least one basic format, cannot
support only FP16 - it needs to support at least one of binary32, binary64, and binary128.

Experts working in machine learning noticed that FP16 was a much more compact way of storing
operands and often provided sufficient precision for them. However, they also found that intermediate
values were much better when accumulated into a higher precision. The final computations were then
typically converted back into the more compact FP16 encoding. This approach has become very
common in machine learning (ML) inference where the weights and activations are stored in FP16
encodings. There was the added benefit that smaller multiplication blocks could be created for the
FP16’s smaller number of significant bits. At this point, widening multiply-accumulate instructions
became much more common. Also, more complicated dot product instructions started to show up
including those that packed two FP16 numbers in a 32-bit register, multiplied these by another pair of
FP16 numbers in another register, added these two products to an FP32 accumulate value in a 3rd
register and returned an FP32 result.

Experts working in machine learning at Google who continued to work with FP32 values noted that the
least significant 16 bits of their mantissas were not always needed for good results, even in training.
They proposed a truncated version of FP32, which was the 16 most significant bits of the FP32
encoding. This format was named BFloat16 (or BF16). The B in BF16, stands for Brain since it was
initially introduced by the Google Brain team. Not only did they find that the number of significant bits
in BF16 tended to be sufficient for their work (despite being fewer than in FP16), but it was very easy
for them to reuse their existing data; FP32 numbers could be readily rounded to BF16 with a minimal
amount of work. Furthermore, the even smaller number of the BF16 significant bits enabled even
smaller multiplication blocks to be built. Similar to FP16, BF16 multiply-accumulate widening and dot-
product instructions started to proliferate.

25.2. Intended Audience

Floating-point arithmetic is a specialized subject, requiring people with many different backgrounds to
cooperate in its correct and efficient implementation. Where possible, we have written this
specification to be understandable by all, though we recognize that the motivations and references to
algorithms or other specifications and standards may be unfamiliar to those who are not domain
experts.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.3. Number Format | Page 141

This specification anticipates being read and acted on by various people with different backgrounds.
We have tried to capture these backgrounds here, with a brief explanation of what we expect them to
know, and how it relates to the specification. We hope this aids people’s understanding of which
aspects of the specification are particularly relevant to them, and which they may (safely!) ignore or
pass to a colleague.

Software developers

These are the people we expect to write code using the instructions in this specification. They
should understand the motivations for the instructions we include, and be familiar with most of the
algorithms and outside standards to which we refer.

Computer architects

We expect architects to have some basic floating-point background. Furthermore, we expect
architects to be able to examine our instructions for implementation issues, understand how the
instructions will be used in context, and advise on how they best to fit the functionality.

Digital design engineers & micro-architects

These are the people who will implement the specification inside a core. Floating-point expertise is
assumed as not all of the corner cases are pointed out in the specification.

Verification engineers

Responsible for ensuring the correct implementation of the extension in hardware. These people
are expected to have some floating-point expertise so that they can identify and generate the
interesting corner cases --- include exceptions --- that are common in floating-point architectures
and implementations.

These are by no means the only people concerned with the specification, but they are the ones we
considered most while writing it.

25.3. Number Format

25.3.1. BF16 Operand Format

BF16 bits
15 14 7 6 o
S expo frac

IEEE Compliance: While BF16 (also known as BFloat16) is not an IEEE-754 standard format, it is a valid

floating-point format as defined by IEEE-754. There are three parameters that specify a format: radix

(b), number of digits in the significand (p), and maximum exponent (emax). For BF16 these values are:
Table 33. BF16 parameters

Parameter Value

radix (b) 2

significand (p) 8

emax 127

Table 34. Obligatory Floating Point Format Table

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.3. Number Format | Page 142

Format Sign Bits Expo Bits fraction bits padded ®s encoding bits expo max/bias expo min

FP16 1 5 10 0 16 15 -14
BF16 1 8 7 0 16 127 -126
TF32 1 8 10 13 32 127 -126
FP32 1 8 23 0 32 127 -126
FP64 1 1 52 0 64 1023 -1022
FP128 1 15 112 0 128 16,383 -16,382

25.3.2. BF16 Behavior

For these BF16 extensions, instruction behavior on BF16 operands is the same as for other floating-
point instructions in the RISC-V ISA. For easy reference, some of this behavior is repeated here.

25.3.2.1. Subnormal Numbers:

Floating-point values that are too small to be represented as normal numbers, but can still be
expressed by the format’s smallest exponent value with a "0" integer bit and at least one "1" bit in the
trailing fractional bits are called subnormal numbers. Basically, the idea is there is a trade off of
precision to support gradual underflow.

All of the BF16 instructions in the extensions defined in this specification (i.e., Zfbfmin, Zvfofmin and
Zvfbfwma) fully support subnormal numbers. That is, instructions are able to accept subnormal values
as inputs and they can produce subnormal results.

Future floating-point extensions, including those that operate on BF16 values, may
o chose not to support subnormal numbers. The comments about supporting
subnormal BF16 values are limited to those instructions defined in this specification.

25.3.2.2. Infinities:

Infinities are used to represent values that are too large to be represented by the target format. These
are usually produced as a result of overflows (depending on the rounding mode), but can also be
provided as inputs. Infinities have a sign associated with them: there are positive infinities and
negative infinities.

Infinities are important for keeping meaningless results from being operated upon.

25.3.2.3. NaNs

NaN stands for Not a Number.

There are two types of NaNs: signalling (sNaN) and quiet (qNaN). No computational instruction will ever
produce an sNaN; These are only provided as input data. Operating on an sNaN will cause an invalid
operation exception. Operating on a Quiet NaN usually does not cause an exception.

QNaNs are provided as the result of an operation when it cannot be represented as a number or
infinity. For example, performing the square root of -1 will result in a qNaN because there is no real
number that can represent the result. NaNs can also be used as inputs.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.3. Number Format | Page 143
NaNs include a sign bit, but the bit has no meaning.
NaNs are important for keeping meaningless results from being operated upon.

Except where otherwise explicitly stated, when the result of a floating-point operation is a gNaN, it is
the RISC-V canonical NaN. For BF16, the RISC-V canonical NaN corresponds to the pattern of Ox7fc®
which is the most significant 16 bits of the RISC-V single-precision canonical NaN.

25.3.2.4. Scalar NaN Boxing

RISC-V applies NaN boxing to scalar results and checks for NaN boxing when a floating-point
operation --- even a vector-scalar operation --- consumes a value from a scalar floating-point register.
If the value is properly NaN-boxed, its least significant bits are used as the operand, otherwise it is
treated as if it were the canonical QNaN.

NaN boxing is nothing more than putting the smaller encoding in the least significant bits of a register
and setting all of the more significant bits to “1”. This matches the encoding of a qNaN (although not
the canonical NaN) in the larger precision.

Nan-boxing never affects the value of the operand itself, it just changes the bits of the register that are
more significant than the operand’s most significant bit.
25.3.2.5. Rounding Modes:

As is the case with other floating-point instructions, the BF16 instructions support all 5 RISC-V
Floating-point rounding modes. These modes can be specified in the rm field of scalar instructions as
well as in the frm CSR

Table 35. RISC-V Floating Point Rounding Modes

Rounding Mode Mnemonic Meaning

000 RNE Round to Nearest, ties to Even

001 RTZ Round towards Zero

010 RDN Round Down (towards —eo)

011 RUP Round Up (towards +<)

100 RMM Round to Nearest, ties to Max Magnitude

As with other scalar floating-point instructions, the rounding mode field rm can also take on the byn
encoding, which indicates that the instruction uses the rounding mode specified in the frm CSR.

Table 36. Additional encoding for the rm field of scalar instructions
Rounding Mode Mnemonic Meaning

111 DYN select dynamic rounding mode

In practice, the default IEEE rounding mode (round to nearest, ties to even) is generally used for
arithmetic.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.3. Number Format | Page 144
25.3.2.6. Handling exceptions

RISC-V supports IEEE-defined default exception handling. BF16 is no exception.

Default exception handling, as defined by IEEE, is a simple and effective approach to producing results
in exceptional cases. For the coder to be able to see what has happened, and take further action if
needed, BF16 instructions set floating-point exception flags the same way as all other floating-point
instructions in RISC-V.

25.3.2.6.1. Underflow

The IEEE-defined underflow exception requires that a result be inexact and tiny, where tininess can be
detected before or after rounding. In RISC-V, tininess is detected after rounding.

It is important to note that the detection of tininess after rounding requires its own rounding that is
different from the final result rounding. This tininess detection requires rounding as if the exponent
were unbounded. This means that the input to the rounder is always a normal number. This is different
from the final result rounding where the input to the rounder is a subnormal number when the value is
too small to be represented as a normal number in the target format. The two different roundings can
result in underflow being signalled for results that are rounded back to the normal range.

As is defined in '754, under default exception handling, underflow is only signalled when the result is
tiny and inexact. In such a case, both the underflow and inexact flags are raised.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.4. Extensions | Page 145

25.4. Extensions

The group of extensions introduced by the BF16 Instruction Set Extensions is listed here.

Detection of individual BF16 extensions uses the unified software-based RISC-V discovery method.
o At the time of writing, these discovery mechanisms are still a work in progress.

The BF16 extensions defined in this specification (i.e., Zfbfmin, zZvfbfmin, and zvfbfwma) depend on the
single-precision floating-point extension F. Furthermore, the vector BF16 extensions (i.e.,zvfbfmin, and
Zvfbfwma) depend on the "v" Vector Extension for Application Processors or the zve32f Vector Extension
for Embedded Processors.

As stated later in this specification, there exists a dependency between the newly defined extensions:
Zvfbfwma depends on zfbfmin and zZvfbfmin.

This initial set of BF16 extensions provides very basic functionality including scalar and vector
conversion between BF16 and single-precision values, and vector widening multiply-accumulate
instructions.

25.4.1. zfbfmin - Scalar BF16 Converts

This extension provides the minimal set of instructions needed to enable scalar support of the BF16
format. It enables BF16 as an interchange format as it provides conversion between BF16 values and
FP32 values.

This extension depends upon the single-precision floating-point extension F, and the FLH, FSH, FMV.X.H,
and FMV.H.X instructions as defined in the zfh extension.

While conversion instructions tend to include all supported formats, in these
extensions we only support conversion between BF16 and FP32 as we are targeting a
special use case. These extensions are intended to support the case where BF16
values are used as reduced precision versions of FP32 values, where use of BF16
provides a two-fold advantage for storage, bandwidth, and computation. In this use
case, the BF16 values are typically multiplied by each other and accumulated into

o FP32 sums. These sums are typically converted to BF16 and then used as subsequent
inputs. The operations on the BF16 values can be performed on the CPU or a loosely
coupled coprocessor.

Subsequent extensions might provide support for native BF16 arithmetic. Such
extensions could add additional conversion instructions to allow all supported
formats to be converted to and from BF16.

BF16 addition, subtraction, multiplication, division, and square-root operations can be

faithfully emulated by converting the BF16 operands to single-precision, performing

the operation using single-precision arithmetic, and then converting back to BF16.

Performing BF16 fused multiply-addition using this method can produce results that
o differ by 1-ulp on some inputs for the RNE and RMM rounding modes.

Conversions between BF16 and formats larger than FP32 can be emulated. Exact
widening conversions from BF16 can be synthesized by first converting to FP32 and
then converting from FP32 to the target precision. Conversions narrowing to BF16
can be synthesized by first converting to FP32 through a series of halving steps and

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.4. Extensions | Page 146

then converting from FP32 to the target precision. As with the fused multiply-addition
instruction described above, this method of converting values to BF16 can be off by
1-ulp on some inputs for the RNE and RMM rounding modes.

Mnemonic Instruction
FCVT.BF16.S Convert FP32 to BF16
FCVT.S.BF16 Convert BF16 to FP32
FLH

FSH

FMV.H.X

FMV.X.H

25.4.2. zvfbfmin - Vector BF16 Converts

This extension provides the minimal set of instructions needed to enable vector support of the BF16
format. It enables BF16 as an interchange format as it provides conversion between BF16 values and
FP32 values.

This extension depends upon either the "V" extension or the zve32f embedded vector extension.

While conversion instructions tend to include all supported formats, in these
extensions we only support conversion between BF16 and FP32 as we are targeting a
special use case. These extensions are intended to support the case where BF16
values are used as reduced precision versions of FP32 values, where use of BF16
provides a two-fold advantage for storage, bandwidth, and computation. In this use
case, the BF16 values are typically multiplied by each other and accumulated into

o FP32 sums. These sums are typically converted to BF16 and then used as subsequent
inputs. The operations on the BF16 values can be performed on the CPU or a loosely
coupled coprocessor.

Subsequent extensions might provide support for native BF16 arithmetic. Such
extensions could add additional conversion instructions to allow all supported
formats to be converted to and from BF16.

BF16 addition, subtraction, multiplication, division, and square-root operations can be
faithfully emulated by converting the BF16 operands to single-precision, performing
the operation using single-precision arithmetic, and then converting back to BF16.
Performing BF16 fused multiply-addition using this method can produce results that
differ by 1-ulp on some inputs for the RNE and RMM rounding modes.

o Conversions between BF16 and formats larger than FP32 can be faithfully emulated.
Exact widening conversions from BF16 can be synthesized by first converting to FP32
and then converting from FP32 to the target precision. Conversions narrowing to
BF16 can be synthesized by first converting to FP32 through a series of halving steps
using vector round-towards-odd narrowing conversion instructions (vfncvt.rod.f.f.w).
The final convert from FP32 to BF16 would use the desired rounding mode.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Mnemonic

Instruction

vfncvtbf16.f.fw Vector convert FP32 to BF16

viwevtbf16.f.f.v Vector convert BF16 to FP32

25.4.3. zvfbfuma - Vector BF16 widening mul-add

25.5. Instructions | Page 147

This extension provides a vector widening BF16 mul-add instruction that accumulates into FP32.

This extension depends upon the zvfbfmin extension and the zfbfmin extension.

Mnemonic

Instruction

VFWMACCBF16 Vector BF16 widening multiply-accumulate

25.5. Instructions

25.5.1. fcvt.bf16.s

Synopsis

Convert FP32 value to a BF16 value

Mnemonic
fevt.bf16.s rd, rs1
Encoding
31 27 26 25 24 20 19 15 14 12 1 6 o
01000 10 91000 rs1 rm rd 1910011
fovt h bf16.s OP-FP
Encoding

Description

While the mnemonic of this instruction is consistent with that of the other RISC-V
floating-point convert instructions, a new encoding is used in bits 24:20.

BF16.S and H are used to signify that the source is FP32 and the destination is BF16.

Narrowing convert FP32 value to a BF16 value. Round according to the RM field.

This instruction is similar to other narrowing floating-point-to-floating-point conversion instructions.

Exceptions: Overflow, Underflow, Inexact, Invalid

Included in: Zfbfmin

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.5. Instructions | Page 148

25.5.2. fcvt.s.bf16

Synopsis

Convert BF16 value to an FP32 value

Mnemonic

fcvt.s.bf16 rd, rs1i

Encoding
31 27 26 25 24 20 19 15 14 12 1M 0
01000 00 00110 rst rm rd 1010011
fovt s bf16 OP-FP
Encoding
o While the mnemonic of this instruction is consistent with that of the other RISC-V
floating-point convert instructions, a new encoding is used in bits 24:20 to indicate
that the source is BF16.
Description

Converts a BF16 value to an FP32 value. The conversion is exact.

This instruction is similar to other widening floating-point-to-floating-point conversion instructions.

If the input is normal or infinity, the BF16 encoded value is shifted to the left by 16
places and the least significant 16 bits are written with Os.

The result is NaN-boxed by writing the most significant FLEN-32 bits with Ts.

Exceptions: Invalid

Included in: Zfbfmin

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.5.3. vincvtbf16.f.f.w

Synopsis
Vector convert FP32 to BF16

Mnemonic
vincvtbf16.f.f.w vd, vs2, vm

25.5. Instructions | Page 149

Encoding
31 26 25 24 20 19 15 14 12 1M 6 0
918010 vm vs2 11101 001 vd 1019111
VFUNARY® vincvtbf16 OPFVV OP-V
Reserved Encodings
® SEw is any value other than 16
Arguments
Register Direction EEW Definition
Vs2 input 32 FP32 Source
vd output 16 BF16 Result
Description

Narrowing convert from FP32 to BF16. Round according to the frm register.

This instruction is similar to vfncvt.f.f.w which converts a floating-point value in a 2*SEW-width format
into an SEW-width format. However, here the SEW-width format is limited to BF16.

Exceptions: Overflow, Underflow, Inexact, Invalid

Included in: Zvfbfmin

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.5. Instructions | Page 150
25.5.4. vfwcvtbf16.f.f.v

Synopsis
Vector convert BF16 to FP32

Mnemonic
viwcvtbf16.f.f.v vd, vs2, vm

Encoding
31 26 25 24 20 19 15 14 12 11
018018 vm vs2 01101 001 vd 1910111
VFUNARY® viwcvtbf16 OPFVV OP-V

Reserved Encodings
® SEw is any value other than 16

Arguments

Register Direction EEW Definition

Vs2 input 16 BF16 Source
vd output 32 FP32 Result
Description

Widening convert from BF16 to FP32. The conversion is exact.

This instruction is similar to vfwevt.f.f.v which converts a floating-point value in an SEW-width format
into a 2*SEW-width format. However, here the SEW-width format is limited to BF16.

o If the input is normal or infinity, the BF16 encoded value is shifted to the left by 16

places and the least significant 16 bits are written with 0s.

Exceptions: Invalid

Included in: Zvfbfmin

The RISC-V Instruction Set Manual Volume I | © RISC-V International

25.5.5. vfwmaccbf16

Synopsis

25.5. Instructions | Page 151

Vector BF16 widening multiply-accumulate

Mnemonic

vfwmaccbf16.vv vd, vs1, vs2, vm
viwmaccbf16.vf vd, rs1, vs2, vm

Encoding (Vector-Vector)

31 26 25 24 20 19 15 14 12 1 7 6]
111011 vm vs2 vsi 001 vd 1010111
vfwmaccbf16 OPFVV OP-V
Encoding (Vector-Scalar)
31 26 25 24 20 19 15 14 122 11 7 6]
111011 vm vs2 rsi 101 vd 1010111
vfwmacchf16 OPFVF OP-V

Reserved Encodings
® Stw is any value other than 16

Arguments

Register Direction EEW Definition

vd input 32 FP32 Accumulate
Vsi1/rsi input 16 BF16 Source

Vs2 input 16 BF16 Source

vd output 32 FP32 Result
Description

This instruction performs a widening fused multiply-accumulate operation, where each pair of BF16
values are multiplied and their unrounded product is added to the corresponding FP32 accumulate
value. The sum is rounded according to the frm register.

In the vector-vector version, the BF16 elements are read from vs1 and vs2 and FP32 accumulate value
is read from vd. The FP32 result is written to the destination register vd.

The vector-scalar version is similar, but instead of reading elements from vs1, a scalar BF16 value is

read from the FPU register rsi.

Exceptions: Overflow, Underflow, Inexact, Invalid

Operation

This vfwmaccbf16.vv instruction is equivalent to widening each of the BF16 inputs to FP32 and then
performing an FMACC as shown in the following instruction sequence:

vfwevtbflé.f.f.v T1, vsl, vm
vfwevtbflé.f.f.v T2, vs2, vm

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Bibliography | Page 152

vfmacc.vyv vd, T1, T2, vm

Likewise, vfumaccbf16.vf is equivalent to the following instruction sequence:

fcvt.s.bflé T1, rsl
vfwevtbflé.f.f.v T2, vs2, vm
vfmacc.vf vd, T1, T2, vm

Included in: Zvfbfwma
Bibliography

754-2019 - IEEE Standard for Floating-Point Arithmetic
754-2008 - IEEE Standard for Floating-Point Arithmetic

The RISC-V Instruction Set Manual Volume I | © RISC-V International

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/4610935

26.1. Load-Immediate Instructions | Page 153

Chapter 26. "Zfa" Extension for Additional Floating-Point
Instructions, Version 1.0

This chapter describes the Zfa standard extension, which adds instructions for immediate loads, IEEE
754-2019 minimum and maximum operations, round-to-integer operations, and quiet floating-point
comparisons. For RV32D, the Zfa extension also adds instructions to transfer double-precision
floating-point values to and from integer registers, and for RV64Q, it adds analogous instructions for
quad-precision floating-point values. The Zfa extension depends on the F extension.

26.1. Load-Immediate Instructions

The FLI.S instruction loads one of 32 single-precision floating-point constants, encoded in the rs7
field, into floating-point register rd. The correspondence of rs7 field values and single-precision
floating-point values is shown in Table 37. FLL.S is encoded like FMV.W.X, but with rs2=1.

Table 37. Immediate values loaded by the FLIS instruction.

rs1 Value Sign Exponent Significand
] -1.0 1 01111111 000..000
1 Minimum positive normal 0 00000001 000..000
2 1.0x2716 @ 01161111 000..000
3 1.0x2715 @ 01110000 000..000
4 1.0x278 0 01110111 000..000
5 1.0x2~7 © 01111000 000..000
6 0.0625 (24) 0 01111011 000..000
7 0.125 (273) 0 011111060 000..000
8 0.25 0 01111101 000..000
9 0.3125 0 01111101 010..000
10 0.375 0 01111101 100..000
1 0.4375 0 01111101 110..000
12 0.5 0 01111110 000..000
13 0.625 0 01111110 010..000
14 0.75 0 01111110 100..000
15 0.875 0 01111110 110..000
16 1.0 0 01111111 000..000
17 1.25 0 01111111 010..000
18 1.5 0 01111111 100..000
19 175 0 01111111 110..000
20 2.0 0 100600000 000..000
21 2.5 0 10000000 010..000
22 3 0 160000000 100..000

The RISC-V Instruction Set Manual Volume I | © RISC-V International

26.2. Minimum and Maximum Instructions | Page 154

rs1 Value Sign Exponent Significand
23 4 0 10000001 000..000
24 8 0 10000010 000..000
25 16 0 10000011 000..000
26 128 (27) 0 10000110 000..000
27 256 (28) @ 10000111 000..000
28 215 0 10001110 000..000
29 216 0 10001111 000..000
30 40 0 11111111 000..000
31 Canonical NaN o 11111111 100..000

The preferred assembly syntax for entries 1, 30, and 37 is min, inf, and nan,
respectively. For entries ® through 29 (including entry 1), the assembler will accept
decimal constants in C-like syntax.

The set of 32 constants was chosen by examining floating-point libraries, including
the C standard math library, and to optimize fixed-point to floating-point conversion.

Entries 8-22 follow a regular encoding pattern. No entry sets mantissa bits other than
the two most significant ones.

If the D extension is implemented, FLI.D performs the analogous operation, but loads a double-
precision value into floating-point register rd. Note that entry 1 (corresponding to the minimum
positive normal value) has a numerically different value for double-precision than for single-precision.
FLI.D is encoded like FLI.S, but with fmt=D.

If the Q extension is implemented, FLI.Q performs the analogous operation, but loads a quad-
precision value into floating-point register rd. Note that entry 1 (corresponding to the minimum
positive normal value) has a numerically different value for quad-precision. FLI.Q is encoded like FLI.S,
but with fmt=Q.

If the Zfh or Zvfh extension is implemented, FLI.H performs the analogous operation, but loads a half-
precision floating-point value into register rd. Note that entry 1 (corresponding to the minimum
positive normal value) has a numerically different value for half-precision. Furthermore, since 216 is not
representable in half-precision floating-point, entry 29 in the table instead loads positive infinity—i.e.,
it is redundant with entry 30. FLI.H is encoded like FLI.S, but with fmt=H.

e Additionally, since 2716 and 215 are subnormal in half-precision, entry 1is numerically
greater than entries 2 and 3 for FLIH.

The FLI.fmt instructions never set any floating-point exception flags.

26.2. Minimum and Maximum Instructions

The FMINM.S and FMAXM.S instructions are defined like the FMIN.S and FMAX.S instructions, except
that if either input is NaN, the result is the canonical NaN.

If the D extension is implemented, FMINM.D and FMAXM.D instructions are analogously defined to

The RISC-V Instruction Set Manual Volume I | © RISC-V International

26.3. Round-to-Integer Instructions | Page 155

operate on double-precision numbers.

If the Zfh extension is implemented, FMINM.H and FMAXM.H instructions are analogously defined to
operate on half-precision numbers.

If the Q extension is implemented, FMINM.Q and FMAXM.Q instructions are analogously defined to
operate on quad-precision numbers.

These instructions are encoded like their FMIN and FMAX counterparts, but with instruction bit 13 set
to 1.

o These instructions implement the IEEE 754-2019 minimum and maximum
operations.

26.3. Round-to-Integer Instructions

The FROUND.S instruction rounds the single-precision floating-point number in floating-point register
rs1to an integer, according to the rounding mode specified in the instruction’s rm field. It then writes
that integer, represented as a single-precision floating-point number, to floating-point register rd. Zero
and infinite inputs are copied to rd unmodified. Signaling NaN inputs cause the invalid operation
exception flag to be set; no other exception flags are set. FROUND.S is encoded like FCVT.S.D, but with
rs2=4.

The FROUNDNX.S instruction is defined similarly, but it also sets the inexact exception flag if the input
differs from the rounded result and is not NaN. FROUNDNX.S is encoded like FCVT.S.D, but with rs2=5.

If the D extension is implemented, FROUND.D and FROUNDNX.D instructions are analogously defined
to operate on double-precision numbers. They are encoded like FCVT.D.S, but with rs2=4 and 5,
respectively,

If the Zfh extension is implemented, FROUND.H and FROUNDNXH instructions are analogously
defined to operate on half-precision numbers. They are encoded like FCVT.H.S, but with rs2=4 and 5,
respectively,

If the Q extension is implemented, FROUND.Q and FROUNDNX.Q instructions are analogously defined
to operate on quad-precision numbers. They are encoded like FCVT.Q.S, but with rs2=4 and 5,
respectively,

The FROUNDNX.fmt instructions implement the IEEE 754-2019
e roundTolntegralExact operation, and the FROUND.fmt instructions implement the
other operations in the roundTolIntegral family.

26.4. Modular Convert-to-Integer Instruction

The FCVTMOD.W.D instruction is defined similarly to the FCVT.W.D instruction, with the following
differences. FCVTMOD.W.D always rounds towards zero. Bits 31:.0 are taken from the rounded,
unbounded two’s complement result, then sign-extended to XLEN bits and written to integer register
rd. +« and NaN are converted to zero.

Floating-point exception flags are raised the same as they would be for FCVT.W.D with the same input
operand.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

26.5. Move Instructions | Page 156

This instruction is only provided if the D extension is implemented. It is encoded like FCVT.W.D, but
with the rs2 field set to 8 and the rm field set to 1 (RTZ). Other rm values are reserved.

The assembly syntax requires the RTZ rounding mode to be explicitly specified, i.e.,

fecvtmod.w.d rd, rsl, rtz

o The FCVTMOD.W.D instruction was added principally to accelerate the processing of
JavaScript Numbers. Numbers are double-precision values, but some operators
implicitly truncate them to signed integers mod 232

26.5. Move Instructions

For RV32 only, if the D extension is implemented, the FMVH.X.D instruction moves bits 63:32 of
floating-point register rs7 into integer register rd. It is encoded in the OP-FP major opcode with
funct3=0, rs2=1, and funct7=1110001.

o FMVH.X.D is used in conjunction with the existing FMV.X.W instruction to move a
double-precision floating-point number to a pair of x-registers.

For RV32 only, if the D extension is implemented, the FMVP.D.X instruction moves a double-precision
number from a pair of integer registers into a floating-point register. Integer registers rs7 and rs2
supply bits 31:0 and 63:32, respectively; the result is written to floating-point register rd. FMVP.D.X is
encoded in the OP-FP major opcode with funct3=0 and funct7=1011001.

For RV64 only, if the Q extension is implemented, the FMVH.X.Q instruction moves bits 127:64 of
floating-point register rs7 into integer register rd. It is encoded in the OP-FP major opcode with
funct3=0, rs2=1, and funct7=1110011.

o FMVH.X.Q is used in conjunction with the existing FMV.X.D instruction to move a
quad-precision floating-point number to a pair of x-registers.

For RV64 only, if the Q extension is implemented, the FMVP.Q.X instruction moves a double-precision
number from a pair of integer registers into a floating-point register. Integer registers rs7 and rs2
supply bits 63:0 and 127:64, respectively; the result is written to floating-point register rd. FMVP.Q.X is
encoded in the OP-FP major opcode with funct3=0 and funct7=1011011.

26.6. Comparison Instructions

The FLEQ.S and FLTQ.S instructions are defined like the FLE.S and FLT.S instructions, except that
quiet NaN inputs do not cause the invalid operation exception flag to be set.

If the D extension is implemented, FLEQ.D and FLTQ.D instructions are analogously defined to operate
on double-precision numbers.

If the Zfh extension is implemented, FLEQ.H and FLTQ.H instructions are analogously defined to
operate on half-precision numbers.

If the Q extension is implemented, FLEQ.Q and FLTQ.Q instructions are analogously defined to
operate on quad-precision numbers.

These instructions are encoded like their FLE and FLT counterparts, but with instruction bit 14 set to 1.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

26.6. Comparison Instructions | Page 157

o We do not expect analogous comparison instructions will be added to the vector ISA,
since they can be reasonably efficiently emulated using masking.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

27.1. Processing of Narrower Values | Page 158

Chapter 27. "Zfinx", "Zdinx", "Zhinx", "Zhinxmin" Extensions for
Floating-Point in Integer Registers, Version 1.0

This chapter defines the "Zfinx" extension (pronounced "z-f-in-x") that provides instructions similar to
those in the standard floating-point F extension for single-precision floating-point instructions but
which operate on the x registers instead of the f registers. This chapter also defines the "Zdinx",
"Zhinx", and "Zhinxmin" extensions that provide similar instructions for other floating-point precisions.

The F extension uses separate f registers for floating-point computation, to reduce
register pressure and simplify the provision of register-file ports for wide
superscalars. However, the additional of architectural state increases the minimal
implementation cost. By eliminating the f registers, the Zfinx extension substantially

0 reduces the cost of simple RISC-V implementations with floating-point instruction-
set support. Zfinx also reduces context-switch cost.

In general, software that assumes the presence of the F extension is incompatible
with software that assumes the presence of the Zfinx extension, and vice versa.

The Zfinx extension adds all of the instructions that the F extension adds, except for the transfer
instructions FLW, FSW, FMV.W.X, FMV.X.W, C.FLW[SP], and C.FSWI[SP].

Zfinx software uses integer loads and stores to transfer floating-point values from
o and to memory. Transfers between registers use either integer arithmetic or floating-
point sign-injection instructions.

The Zfinx variants of these F-extension instructions have the same semantics, except that whenever
such an instruction would have accessed an f register, it instead accesses the x register with the same
number.

The Zfinx extension depends on the "Zicsr" extension for control and status register access.

27.1. Processing of Narrower Values

Floating-point operands of width w < XLEN bits occupy bits w-1:0 of an x register. Floating-point
operations on w-bit operands ignore operand bits XLEN-1: w.

Floating-point operations that produce w < XLEN-bit results fill bits XLEN-1: w with copies of bit w-1
(the sign bit).

The NaN-boxing scheme employed in the f registers was designed to efficiently
support recoded floating-point formats. Recoding is less practical for Zfinx, though,
since the same registers hold both floating-point and integer operands. Hence, the
need for NaN boxing is diminished.

o Sign-extending 32-bit floating-point numbers when held in RV64 x registers is
compatible with the existing RV64 calling conventions, which leave bits 63-32
undefined when passing a 32-bit floating point value in x registers. To keep the
architecture more regular, we extend this pattern to 16-bit floating-point numbers in
both RV32 and RV64.

27.2. Zdinx

The RISC-V Instruction Set Manual Volume I | © RISC-V International

27.3. Processing of Wider Values | Page 159

The Zdinx extension provides analogous double-precision floating-point instructions. The Zdinx
extension depends upon the Zfinx extension.

The Zdinx extension adds all of the instructions that the D extension adds, except for the transfer
instructions FLD, FSD, FMV.D.X, FMV.X.D, C.FLD[SP], and C.FSD[SP].

The Zdinx variants of these D-extension instructions have the same semantics, except that whenever
such an instruction would have accessed an f register, it instead accesses the x register with the same
number.

27.3. Processing of Wider Values

Double-precision operands in RV32Zdinx are held in aligned x-register pairs, i.e., register numbers
must be even. Use of misaligned (odd-numbered) registers for double-width floating-point operands is
reserved.

Regardless of endianness, the lower-numbered register holds the low-order bits, and the higher-
numbered register holds the high-order bits: e.g., bits 31:0 of a double-precision operand in RV32Zdinx
might be held in register x14, with bits 63:32 of that operand held in x15.

When a double-width floating-point result is written to xe, the entire write takes no effect: e.g., for
RV32Zdinx, writing a double-precision result to xo does not cause x1 to be written.

When x0 is used as a double-width floating-point operand, the entire operand is zero—i.e., x1 is not
accessed.

Load-pair and store-pair instructions are not provided, so transferring double-
o precision operands in RV32Zdinx from or to memory requires two loads or stores.
Register moves need only a single FSGNJ.D instruction, however.

27.4. Zhinx

The Zhinx extension provides analogous half-precision floating-point instructions. The Zhinx extension
depends upon the Zfinx extension.

The Zhinx extension adds all of the instructions that the Zfh extension adds, except for the transfer
instructions FLH, FSH, FMV.H.X, and FMV.X.H.

The Zhinx variants of these Zfh-extension instructions have the same semantics, except that whenever
such an instruction would have accessed an f register, it instead accesses the x register with the same
number.

27.5. Zhinxmin

The Zhinxmin extension provides minimal support for 16-bit half-precision floating-point instructions
that operate on the x registers. The Zhinxmin extension depends upon the Zfinx extension.

The Zhinxmin extension includes the following instructions from the Zhinx extension: FCVT.S.H and
FCVT.H.S. If the Zdinx extension is present, the FCVT.D.H and FCVT.H.D instructions are also included.

o In the future, an RV64Zqinx quad-precision extension could be defined analogously

The RISC-V Instruction Set Manual Volume I | © RISC-V International

27.6. Privileged Architecture Implications | Page 160
to RV32Zdinx. An RV32Zqinx extension could also be defined but would require
quad-register groups.

27.6. Privileged Architecture Implications

In the standard privileged architecture defined in Volume II, the mstatus field FS is hardwired to ® if
the Zfinx extension is implemented, and FS no longer affects the trapping behavior of floating-point
instructions or fcsr accesses.

The misa bits F, D, and Q are hardwired to ® when the Zfinx extension is implemented.

e A future discoverability mechanism might be used to probe the existence of the
Zfinx, Zhinx, and Zdinx extensions.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.1. Overview | Page 161

Chapter 28. "C" Extension for Compressed Instructions,
Version 2.0

This chapter describes the RISC-V standard compressed instruction-set extension, named "C", which
reduces static and dynamic code size by adding short 16-bit instruction encodings for common
operations. The C extension can be added to any of the base ISAs (RV32, RV64, RV128), and we use
the generic term "RVC" to cover any of these. Typically, 580%-60% of the RISC-V instructions in a
program can be replaced with RVC instructions, resulting in a 25%-30% code-size reduction.

28.1. Overview

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V
instructions when:

® the immediate or address offset is small, or

® one of the registers is the zero register (x8), the ABI link register (x1), or the ABI stack pointer (x2),
or

® the destination register and the first source register are identical, or

® the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension allows
16-bit instructions to be freely intermixed with 32-bit instructions, with the latter now able to start on
any 16-bit boundary, i.e., IALIGN=16. With the addition of the C extension, no instructions can raise
instruction-address-misaligned exceptions.

o Removing the 32-bit alignment constraint on the original 32-bit instructions allows
significantly greater code density.

The compressed instruction encodings are mostly common across RV32C, RV64C, and RV128C, but as
shown in Table 34, a few opcodes are used for different purposes depending on base ISA. For
example, the wider address-space RV64C and RV128C variants require additional opcodes to
compress loads and stores of 64-bit integer values, while RV32C uses the same opcodes to compress
loads and stores of single-precision floating-point values. Similarly, RV128C requires additional
opcodes to capture loads and stores of 128-bit integer values, while these same opcodes are used for
loads and stores of double-precision floating-point values in RV32C and RV64C. If the C extension is
implemented, the appropriate compressed floating-point load and store instructions must be provided
whenever the relevant standard floating-point extension (F and/or D) is also implemented. In addition,
RV32C includes a compressed jump and link instruction to compress short-range subroutine calls,
where the same opcode is used to compress ADDIW for RV64C and RV128C.

Double-precision loads and stores are a significant fraction of static and dynamic
instructions, hence the motivation to include them in the RV32C and RV64C

encoding.
Although single-precision loads and stores are not a significant source of static or
o dynamic compression for benchmarks compiled for the currently supported ABIs, for

microcontrollers that only provide hardware single-precision floating-point units and
have an ABI that only supports single-precision floating-point numbers, the single-
precision loads and stores will be used at least as frequently as double-precision
loads and stores in the measured benchmarks. Hence, the motivation to provide

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.1. Overview | Page 162

compressed support for these in RV32C.

Short-range subroutine calls are more likely in small binaries for microcontrollers,
hence the motivation to include these in RV32C.

Although reusing opcodes for different purposes for different base ISAs adds some
complexity to documentation, the impact on implementation complexity is small even
for designs that support multiple base ISAs. The compressed floating-point load and
store variants use the same instruction format with the same register specifiers as
the wider integer loads and stores.

RVC was designed under the constraint that each RVC instruction expands into a single 32-bit
instruction in either the base ISA (RV32I/E, RV64I/E, or RV128I) or the F and D standard extensions
where present. Adopting this constraint has two main benefits:

® Hardware designs can simply expand RVC instructions during decode, simplifying verification and
minimizing modifications to existing microarchitectures.

® Compilers can be unaware of the RVC extension and leave code compression to the assembler and
linker, although a compression-aware compiler will generally be able to produce better results.

We felt the multiple complexity reductions of a simple one-one mapping between C

e and base IFD instructions far outweighed the potential gains of a slightly denser
encoding that added additional instructions only supported in the C extension, or that
allowed encoding of multiple IFD instructions in one C instruction.

It is important to note that the C extension is not designed to be a stand-alone ISA, and is meant to
be used alongside a base ISA.

Variable-length instruction sets have long been used to improve code density. For
example, the IBM Stretch (Buchholz, 1962), developed in the late 1950s, had an ISA
with 32-bit and 64-bit instructions, where some of the 32-bit instructions were
compressed versions of the full 64-bit instructions. Stretch also employed the
concept of limiting the set of registers that were addressable in some of the shorter
instruction formats, with short branch instructions that could only refer to one of the
index registers. The later IBM 360 architecture (Amdahl et al, 1964) supported a
simple variable-length instruction encoding with 16-bit, 32-bit, or 48-bit instruction
formats.

In 1963, CDC introduced the Cray-designed CDC 6600 (Thornton, 1965), a precursor
to RISC architectures, that introduced a register-rich load-store architecture with

o instructions of two lengths, 15-bits and 30-bits. The later Cray-1 design used a very
similar instruction format, with 16-bit and 32-bit instruction lengths.

The initial RISC ISAs from the 1980s all picked performance over code size, which
was reasonable for a workstation environment, but not for embedded systems. Hence,
both ARM and MIPS subsequently made versions of the ISAs that offered smaller
code size by offering an alternative 16-bit wide instruction set instead of the standard
32-bit wide instructions. The compressed RISC ISAs reduced code size relative to
their starting points by about 25-30%, yielding code that was significantly smaller
than 80x86. This result surprised some, as their intuition was that the variable-length
CISC ISA should be smaller than RISC ISAs that offered only 16-bit and 32-bit
formats.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.2. Compressed Instruction Formats | Page 163

Since the original RISC ISAs did not leave sufficient opcode space free to include
these unplanned compressed instructions, they were instead developed as complete
new ISAs. This meant compilers needed different code generators for the separate
compressed ISAs. The first compressed RISC ISA extensions (e.g., ARM Thumb and
MIPS16) used only a fixed 16-bit instruction size, which gave good reductions in
static code size but caused an increase in dynamic instruction count, which led to
lower performance compared to the original fixed-width 32-bit instruction size. This
led to the development of a second generation of compressed RISC ISA designs
with mixed 16-bit and 32-bit instruction lengths (e.g., ARM Thumb2, microMIPS,
PowerPC VLE), so that performance was similar to pure 32-bit instructions but with
significant code size savings. Unfortunately, these different generations of
compressed ISAs are incompatible with each other and with the original
uncompressed ISA, leading to significant complexity in documentation,
implementations, and software tools support.

Of the commonly used 64-bit ISAs, only PowerPC and microMIPS currently supports
a compressed instruction format. It is surprising that the most popular 64-bit ISA for
mobile platforms (ARM v8) does not include a compressed instruction format given
that static code size and dynamic instruction fetch bandwidth are important metrics.
Although static code size is not a major concern in larger systems, instruction fetch
bandwidth can be a major bottleneck in servers running commercial workloads, which
often have a large instruction working set.

Benefiting from 25 years of hindsight, RISC-V was designed to support compressed
instructions from the outset, leaving enough opcode space for RVC to be added as a
simple extension on top of the base ISA (along with many other extensions). The
philosophy of RVC is to reduce code size for embedded applications and to improve
performance and energy-efficiency for all applications due to fewer misses in the
instruction cache. Waterman shows that RVC fetches 25%-30% fewer instruction
bits, which reduces instruction cache misses by 20%-25%, or roughly the same
performance impact as doubling the instruction cache size. (Waterman, 2011)

28.2. Compressed Instruction Formats

Table 38 shows the nine compressed instruction formats. CR, CI, and CSS can use any of the 32 RVI
registers, but CIW, CL, CS, CA, and CB are limited to just 8 of them. Table 39 lists these popular
registers, which correspond to registers x8 to x15. Note that there is a separate version of load and
store instructions that use the stack pointer as the base address register, since saving to and restoring
from the stack are so prevalent, and that they use the CI and CSS formats to allow access to all 32
data registers. CIW supplies an 8-bit immediate for the ADDI4SPN instruction.

The RISC-V ABI was changed to make the frequently used registers map to registers
'x8-x15". This simplifies the decompression decoder by having a contiguous naturally

o aligned set of register numbers, and is also compatible with the RV32E and RV64E
base ISAs, which only have 16 integer registers.

Compressed register-based floating-point loads and stores also use the CL and CS formats
respectively, with the eight registers mapping to fs8 to f1s.

o The standard RISC-V calling convention maps the most frequently used floating-

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.3. Load and Store Instructions | Page 164

point registers to registers f8 to f15, which allows the same register decompression
decoding as for integer register numbers.

The formats were designed to keep bits for the two register source specifiers in the same place in all
instructions, while the destination register field can move. When the full 5-bit destination register
specifier is present, it is in the same place as in the 32-bit RISC-V encoding. Where immediates are
sign-extended, the sign extension is always from bit 12. Immediate fields have been scrambled, as in
the base specification, to reduce the number of immediate muxes required.

The immediate fields are scrambled in the instruction formats instead of in
e sequential order so that as many bits as possible are in the same position in every
instruction, thereby simplifying implementations.

For many RVC instructions, zero-valued immediates are disallowed and x6 is not a valid 5-bit register
specifier. These restrictions free up encoding space for other instructions requiring fewer operand bits.

Table 38. Compressed 16-bit RVC instruction formats

Format Meaning 151413 12 110 987 65 432 10
CR Register funct4 rd/rs1 rs2 op
CI Immediate funct3 imm rd/rs1 imm op

CSS Stack-relative Store funct3 imm rs2 op
CIW Wide Immediate funct3 imm rd’ op
CL Load funct3 imm rs1’ imm rd’ op
CS Store funct3 imm rs1’ imm rs2’ op
CA Arithmetic funct6 rd’/rs1’ funct2 rs2’ op
CB Branch/Arithmetic funct3 offset rd’/rs1’ offset op
CJ Jump funct3 jump target op

Table 39. Registers specified by the three-bit rsT, rs2’, and rd’ fields of the CIW, CL, CS, CA, and CB

formats.
RVC Register Number 000 001 010 G011 160 101 110 111
Integer Register Number x8 x9 x10 x11 x12 x13 x14 x15
Integer Register ABI Name sB sl aB@ al a2 a3 a4 abd

Floating-Point Register Number f8 | £9 10| f11] 12| f13| f14| 15

Floating-Point Register ABI Name fs0| fsl| fad| fal| fa2| fa3| fad| fas
28.3. Load and Store Instructions

To increase the reach of 16-bit instructions, data-transfer instructions use zero-extended immediates
that are scaled by the size of the data in bytes: x4 for words, x8 for double words, and x16 for quad
words.

RVC provides two variants of loads and stores. One uses the ABI stack pointer, x2, as the base address
and can target any data register. The other can reference one of 8 base address registers and one of 8

The RISC-V Instruction Set Manual Volume I | © RISC-V International

data registers.

28.3.1. Stack-Pointer-Based Loads and Stores

28.3. Load and Store Instructions | Page 165

15 13 12 1
funct3 imm rd imm op
3 1 5 5 2

C.LWSP offset[5] destz0 offset[4:2]|7:6] Cc2
C.LDSP offset[5] dest=0 offset[4:3]8:6] Cc2
C.LGSP offset[5] dest=0 offset[4]9:6] Cc2
C.FLWSP offset[5] dest offset[4:2]|7:6] c2
C.FLDSP offset[5] dest offset[4:3]8:6] Cc2

These instructions use the CI format.

C.LWSP loads a 32-bit value from memory into register rd. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to 1w rd, offset(x2). C.LWSP
is valid only when rd#x0; the code points with rd=xe are reserved.

C.LDSP is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register rd. It
computes its effective address by adding the zero-extended offset, scaled by 8, to the stack pointer, x2.
It expands to 1d rd, offset(x2). C.LDSP is valid only when rd#xe; the code points with rd=xo are
reserved.

C.LQSP is an RV128C-only instruction that loads a 128-bit value from memory into register rd. It
computes its effective address by adding the zero-extended offset, scaled by 16, to the stack pointer,
x2. It expands to 1gq rd, offset(x2). C.LQSP is valid only when rd=xe; the code points with rd=xo are
reserved.

C.FLWSP is an RV32FC-only instruction that loads a single-precision floating-point value from memory
into floating-point register rd. It computes its effective address by adding the zero-extended offset,
scaled by 4, to the stack pointer, x2. It expands to flw rd, offset(x2).

C.FLDSP is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point value
from memory into floating-point register rd. It computes its effective address by adding the zero
-extended offset, scaled by 8, to the stack pointer, x2. It expands to fld rd, offset(x2).

15 13 12 7 6 2 1]
funct3 imm rs2 op
3 6 5 2

C.SWSP offset[5:2|7:6] src c2
C.SDSP offset[5:3|8:6] src Cc2
C.SQSP offset[5:4|9:6] src Cc2
C.FSWSP offset[5:2]7:6] src c2
C.FSDSP offset[5:3|8:6] src Cc2

These instructions use the CSS format.

C.SWSP stores a 32-bit value in register rs2 to memory. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to sw rs2, offset(x2).

C.SDSP is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2 to memory. It
computes an effective address by adding the zero-extended offset, scaled by 8, to the stack pointer, x2.
It expands to sd rs2, offset(x2).

C.SQSP is an RV128C-only instruction that stores a 128-bit value in register rs2 to memory. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the stack pointer,

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.3. Load and Store Instructions | Page 166

x2. It expands to sq rs2, offset(x2).

C.FSWSP is an RV32FC-only instruction that stores a single-precision floating-point value in floating-
point register rs2 to memory. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the stack pointer, x2. It expands to fsw rs2, offset(x2).

C.FSDSP is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point value in
floating-point register rs2 to memory. It computes an effective address by adding the zero-extended
offset, scaled by 8, to the stack pointer, x2. It expands to fsd rs2, offset(x2).

Register save/restore code at function entry/exit represents a significant portion of
static code size. The stack-pointer-based compressed loads and stores in RVC are
effective at reducing the save/restore static code size by a factor of 2 while
improving performance by reducing dynamic instruction bandwidth.

A common mechanism used in other ISAs to further reduce save/restore code size is
load-multiple and store-multiple instructions. We considered adopting these for
RISC-V but noted the following drawbacks to these instructions:

® These instructions complicate processor implementations.

® for virtual memory systems, some data accesses could be resident in physical
memory and some could not, which requires a new restart mechanism for
partially executed instructions.

® Unlike the rest of the RVC instructions, there is no IFD equivalent to Load
Multiple and Store Multiple.

o ® (nlike the rest of the RVC instructions, the compiler would have to be aware of
these instructions to both generate the instructions and to allocate registers in
an order to maximize the chances of the them being saved and stored, since they

would be saved and restored in sequential order.

® Simple microarchitectural implementations will constrain how other instructions
can be scheduled around the load and store multiple instructions, leading to a
potential performance loss.

® The desire for sequential register allocation might conflict with the featured
registers selected for the CIW, CL, CS, CA, and CB formats.

Furthermore, much of the gains can be realized in software by replacing prologue
and epilogue code with subroutine calls to common prologue and epilogue code, a
technique described in Section 5.6 of (Waterman, 2016).

While reasonable architects might come to different conclusions, we decided to omit
load and store multiple and instead use the software-only approach of calling
save/restore millicode routines to attain the greatest code size reduction.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.3. Load and Store Instructions | Page 167

28.3.2. Register-Based Loads and Stores

15 13 12 10 9 7 6 5 4 2 1 o
funct3 imm rs1¥ imm rdi op
3 3 3 2 3 2
Cc.Lw offset[5:3] base offset[2]6] dest Cco
C.LD offset[5:3] base offset[7:6] dest Cco
cLa offset[5]|4|8] base offset[7:6] dest Cco
C.FLW offset[5:3] base offset[2]6] dest Cco
C.FLD offset[5:3] base offset[7:6] dest Cco

These instructions use the CL format.

C.LW loads a 32-bit value from memory into register rd’. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the base address in register rsi’. It expands to w rd‘,
offset(rsl’).

C.LD is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register ra’. It
computes an effective address by adding the zero-extended offset, scaled by 8, to the base address in
register rs1’. It expands to 1d rd’, offset(rsl’).

C.LQ is an RV128C-only instruction that loads a 128-bit value from memory into register rd’. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the base address
in register rs1’. It expands to 1q rd’, offset(rsl’).

C.FLW is an RV32FC-only instruction that loads a single-precision floating-point value from memory
into floating-point register rd’. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register rs1’. It expands to flw rd*, offset(rsl’).

C.FLD is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point value from
memory into floating-point register rd’. It computes an effective address by adding the zero-extended
offset, scaled by 8, to the base address in register rs1’. It expands to fld rd’', offset(rsi’).

15 13 12 10 9 7 6 5 4 2 1]
funct3 imm rs1¥ imm rs2i op
3 3 3 2 3 2
Cc.sw offset[5:3] base offset[2]|6] src Cco
C.SD offset[5:3] base offset[7:6] src co
C.SQ offset[5|4|8] base offset[7:6] src (&)
C.FSwW offset[5:3] base offset[2]6] src Cco
C.FSD offset[5:3] base offset[7:6] src Cco

These instructions use the CS format.

C.SW stores a 32-bit value in register rs2’ to memory. It computes an effective address by adding the
zero-extended offset, scaled by 4, to the base address in register rsi’. It expands to sw rs2’,
offset(rsi’).

C.SD is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2’ to memory. It
computes an effective address by adding the zero-extended offset, scaled by 8, to the base address in
register rs1’. It expands to sd rs2', offset(rsl’).

C.SQ is an RV128C-only instruction that stores a 128-bit value in register rs2’ to memory. It computes
an effective address by adding the zero-extended offset, scaled by 16, to the base address in register
rs1’. It expands to sq rs2', offset(rsl’).

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.4. Control Transfer Instructions | Page 168

C.FSW is an RV32FC-only instruction that stores a single-precision floating-point value in floating-
point register rs2’ to memory. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register rsi’. It expands to fsw rs2', offset(rsl’).

C.FSD is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point value in
floating-point register rs2’ to memory. It computes an effective address by adding the zero-extended
offset, scaled by 8, to the base address in register rsi1’. It expands to fsd rs2’', offset(rsi’).

28.4. Control Transfer Instructions

RVC provides unconditional jump instructions and conditional branch instructions. As with base RVI
instructions, the offsets of all RVC control transfer instructions are in multiples of 2 bytes.

15 13 12 2 1]
funct3 imm op
3 1 2
CJ offset[11|4]9:8]10]6|7|3:1|5] C1
C.JAL offset[11]4]9:8/18|67|3:1|5] C1

These instructions use the CJ format.

C.J performs an unconditional control transfer. The offset is sign-extended and added to the pc to form
the jump target address. C.J can therefore target a +2 KiB range. C.J expands to jal x0, offset.

C.JAL is an RV32C-only instruction that performs the same operation as C.J, but additionally writes the
address of the instruction following the jump (pc+2) to the link register, xi. C.JAL expands to jal x1,
offset.

15 12 1 7 6 2 1 o
funct4 rsi rs2 op
4 5 5 2
CJR srcz0] Cc2
C.JALR src=0] c2

These instructions use the CR format.

C.JR (jump register) performs an unconditional control transfer to the address in register rs1. C.JR
expands to jalr x0, 8(rs1). C.JR is valid only when rs7#xg; the code point with rs7=x0 is reserved.

C.JALR (jump and link register) performs the same operation as C.JR, but additionally writes the
address of the instruction following the jump (pc+2) to the link register, x1. C.JALR expands to jalr x1,
0(rs1). C.JALR is valid only when rs7zxe; the code point with rs7=x6 corresponds to the C.EBREAK
instruction.

Strictly speaking, C.JALR does not expand exactly to a base RVI instruction as the

o value added to the PC to form the link address is 2 rather than 4 as in the base ISA,
but supporting both offsets of 2 and 4 bytes is only a very minor change to the base
microarchitecture.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.5. Integer Computational Instructions | Page 169

15 13 12 10 9 7 6 2 1 o
funct3 imm rs1¥ imm op
3 3 3 5 2
C.BEQZ offset[8|4:3] src offset[7:6|2:1|5] Cc1
C.BNEZ offset[8|4:3] src offset[7:6]2:1|5] C1

These instructions use the CB format.

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to form
the branch target address. It can therefore target a +256 B range. C.BEQZ takes the branch if the
value in register rs7’ is zero. It expands to beq rs1', x8, offset.

C.BNEZ is defined analogously, but it takes the branch if rs7" contains a nonzero value. It expands to
bne rsl’, x0, offset.
28.5. Integer Computational Instructions

RVC provides several instructions for integer arithmetic and constant generation.

28.5.1. Integer Constant-Generation Instructions

The two constant-generation instructions both use the CI instruction format and can target any integer
register.

15 13 12 1 7 6 2 1 o
funct3 imm[5] rd imm[4:0] op
3 1 5 5 2
C.LI imm[5] dest =0 imm[4:0] Cc1
C.LUI nzimm([17] dest != {0, 2} nzimm[16:12] C1

C.LI loads the sign-extended 6-bit immediate, imm, into register rd. C.LI expands into addi rd, x8, imm.
C.LI is valid only when rd#x0; the code points with rd=x6 encode HINTSs.

C.LUI loads the non-zero 6-bit immediate field into bits 17-12 of the destination register, clears the
bottom 12 bits, and sign-extends bit 17 into all higher bits of the destination. C.LUI expands into 1ui
rd, imm. C.LUI is valid only when rd={xe,x2}, and when the immediate is not equal to zero. The code
points with imm=0 are reserved; the remaining code points with rd=x6 are HINTs; and the remaining
code points with rd=x2 correspond to the C.ADDI16SP instruction.

28.5.2. Integer Register-Immediate Operations

These integer register-immediate operations are encoded in the CI format and perform operations on
an integer register and a 6-bit immediate.

15 13 12 1 7 6 2 1 o
funct3 imm[5] rd/rs1 imm([4:] op
3 1 5 5 2
C.ADDI nzimm[5] dest |= 0 nzimm[4:0] Cc1
C.ADDIW imm[5] dest !=0 imm[4:0] C1
C.ADDI16SP nzimm([9] 2 nzimm[4|6|8:7|5] Cc1

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.5. Integer Computational Instructions | Page 170

C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in register rd then writes the
result to rd. C.ADDI expands into addi rd, rd, imm. C.ADDI is valid only when rd=x6 and imm=0. The
code points with rd=xe encode the C.NOP instruction; the remaining code points with imm=0 encode
HINTSs.

C.ADDIW is an RV64C/RV128C-only instruction that performs the same computation but produces a
32-bit result, then sign-extends result to 64 bits. CADDIW expands into addiw rd, rd, imm. The
immediate can be zero for C. ADDIW, where this corresponds to sext.w rd. C.ADDIW is valid only when
rd=xe; the code points with rd=xo0 are reserved.

C.ADDI16SP (add immediate to stack pointer) shares the opcode with C.LUI, but has a destination
field of x2. C.ADDI16SP adds the non-zero sign-extended 6-bit immediate to the value in the stack
pointer (sp=x2), where the immediate is scaled to represent multiples of 16 in the range [-512, 496].
C.ADDI16SP is used to adjust the stack pointer in procedure prologues and epilogues. It expands into
addi x2, x2, nzimm[9:4]. C.ADDI16SP is valid only when nzimm=0; the code point with nzimm=8 is
reserved.

o In the standard RISC-V calling convention, the stack pointer sp is always 16-byte
aligned.

5 13 2 ' ' ' ' ' 5 4 2 L
funct3 imm rdi op
T3 ' ' ' 8 ' ' ' T3 2

C.ADDI4SPN nzuimm[5:4|9:6|2|3] dest co

C.ADDI4SPN (add immediate to stack pointer, non-destructive) is a CIW-format instruction that adds
a zero-extended non-zero immediate, scaled by 4, to the stack pointer, x2, and writes the result to rd’.
This instruction is used to generate pointers to stack-allocated variables, and expands to addi rd’, x2,
nzuimm[9:2]. C.ADDI4SPN is valid only when nzuimm=0; the code points with nzuimm=0 are reserved.

15 13 12 1 7 6 2 1 o
funct3 shamt[5 rd/rs1 shamt[4:0] op
3 1 5 5 2
C.SLLI shamt[5] dest!=0 shamt[4:0] Cc2

C.SLLI is a CI-format instruction that performs a logical left shift of the value in register rd then writes
the result to rd. The shift amount is encoded in the shamt field. For RV128C, a shift amount of zero is
used to encode a shift of 64. C.SLLI expands into slli rd, rd, shamt[5:0], except for RV128C with
shamt=0, which expands to s1li rd, rd, 64.

For RV32C, shamt[5] must be zero; the code points with shamit[5]=1 are designated for custom
extensions. For RV32C and RV64C, the shift amount must be non-zero; the code points with shamt=0
are HINTSs. For all base ISAs, the code points with rd=xe are HINTs, except those with shamt[5]=1 in
RV32C.

15 13 12 1 10 9 7 6 2 1 o
funct3 shamt[5 funct2 rdX/rs1X shamt[4:0] op
3 1 2 3 5 2
C.SRLI shamt[5] C.SRLI dest shamt[4:0] C1
C.SRAI shamt[5] C.SRAI dest shamt[4:0] C1

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.5. Integer Computational Instructions | Page 171

C.SRLI is a CB-format instruction that performs a logical right shift of the value in register rd’ then
writes the result to rd’. The shift amount is encoded in the shamt field. For RV128C, a shift amount of
zero is used to encode a shift of 64. Furthermore, the shift amount is sign-extended for RV128C, and
so the legal shift amounts are 1-31, 64, and 96-127. C.SRLI expands into sr1i rd’, rd’, shamt, except
for RV128C with shamt=0, which expands to srli rd’, rd’', 64.

For RV32C, shamt[5] must be zero; the code points with shamt[5]=1 are designated for custom
extensions. For RV32C and RV64C, the shift amount must be non-zero; the code points with shamt=0
are HINTSs.

C.SRAI is defined analogously to C.SRLI, but instead performs an arithmetic right shift. C.SRAI
expands to srai rd’, rd', shamt.

Left shifts are usually more frequent than right shifts, as left shifts are frequently
used to scale address values. Right shifts have therefore been granted less encoding
space and are placed in an encoding quadrant where all other immediates are sign-
extended. For RV128, the decision was made to have the 6-bit shift-amount

o immediate also be sign-extended. Apart from reducing the decode complexity, we
believe right-shift amounts of 96-127 will be more useful than 64-95, to allow
extraction of tags located in the high portions of 128-bit address pointers. We note
that RV128C will not be frozen at the same point as RV32C and RV64C, to allow
evaluation of typical usage of 128-bit address-space codes.

15 13 12 1 10 9 7 6 2 1]
funct3 imm[5] funct2 rd¥/rs1X imm[4:0] op
3 1 2 3 5 2
C.ANDI imm[5] C.ANDI dest imm[4:0] Cc1

C.ANDI is a CB-format instruction that computes the bitwise AND of the value in register rd’ and the
sign-extended 6-bit immediate, then writes the result to rd’. C.ANDI expands to andi rd’, rd’, imm.

28.5.3. Integer Register-Register Operations

15 12 1 7 6 2 1 o
funct4 rd/rs1 rs2 op
4 5 5 2
C.MV dest#0 src=0 c2
C.ADD dest=0 src=0 Cc2

These instructions use the CR format.

C.MV copies the value in register rs2 into register rd. C.MV expands into add rd, x8, rs2. C.MV is valid
only when rs2#xe; the code points with rs2=x0 correspond to the C.JR instruction. The code points with
rs2#x0 and rd=x0 are HINTSs.

C.MV expands to a different instruction than the canonical MV pseudoinstruction,

o which instead uses ADDI. Implementations that handle MV specially, e.g. using
register-renaming hardware, may find it more convenient to expand C.MV to MV
instead of ADD, at slight additional hardware cost.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.5. Integer Computational Instructions | Page 172

C.ADD adds the values in registers rd and rs2 and writes the result to register rd. C.ADD expands into
add rd, rd, rs2. C.ADD is only valid when rs2zxe; the code points with rs2=xe correspond to the C.JALR
and C.EBREAK instructions. The code points with rs2=x0 and rd=xe are HINTSs.

15 10 9 7 6 5 4 2 1 o

funct6 rdX/rs1i funct2 rs2i op

6 3 2 3 2

C.AND dest C.AND src C1

C.OR dest C.OR src C1

C.XOR dest C.XOR src c1

C.SUB dest C.SUB src C1

C.ADDW dest C.ADDW src Cc1

C.suBw dest Cc.suBw src Cc1

These instructions use the CA format.

C.AND computes the bitwise AND of the values in registers rd’ and rs2’, then writes the result to register
rd’. c.AND expands into and rd’, rd’, rs2’.

C.0R computes the bitwise or of the values in registers rd” and rs2’, then writes the result to register rd'.
C.0R expands into or rd’, rd’, rs2’.

C.X0R computes the bitwise Xor of the values in registers rd’ and rs2’, then writes the result to register
rd’. C.X0R expands into xor rd’, rd’, rs2’.

C.SUB subtracts the value in register rs2’ from the value in register rd’, then writes the result to register
rd’. C.suB expands into sub rd*, rd’, rs2’.

C.ADDW is an RV64C/RV128C-only instruction that adds the values in registers rd’ and rs2’, then sign-
extends the lower 32 bits of the sum before writing the result to register rd’. c.AbDW expands into addw

rd’, rd', rs2'.

C.SuBW is an RV64C/RV128C-only instruction that subtracts the value in register rs2’ from the value in
register rd’, then sign-extends the lower 32 bits of the difference before writing the result to register
rd’. C.suBW expands into subw rd’, rd’, rs2’.

This group of six instructions do not provide large savings individually, but do not
occupy much encoding space and are straightforward to implement, and as a group
provide a worthwhile improvement in static and dynamic compression.

28.5.4. Defined Illegal Instruction

15 13 12 1 7 6 2 1 0
o o 0
3 1 5 5 2
0 o 0 0 0

A 16-bit instruction with all bits zero is permanently reserved as an illegal instruction.

We reserve all-zero instructions to be illegal instructions to help trap attempts to
o execute zero-ed or non-existent portions of the memory space. The all-zero value
should not be redefined in any non-standard extension. Similarly, we reserve

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.6. Usage of C Instructions in LR/SC Sequences | Page 173

instructions with all bits set to 1 (corresponding to very long instructions in the RISC-
V variable-length encoding scheme) as illegal to capture another common value seen
in non-existent memory regions.

28.5.5. NOP Instruction

15 13 12 1 7 6 2 1 o
funct3 imm[5] rd/rs1 imm[4:0] op
3 1 5 5 2
C.NOP o 0 o C1

c.Nop is a CI-format instruction that does not change any user-visible state, except for advancing the pc
and incrementing any applicable performance counters. C.NOP expands to nop. C.NOP is valid only when
imm=0; the code points with imm=0 encode HINTSs.

28.5.6. Breakpoint Instruction

15 12 1 2 1 o
funct4 o op
4 10 2
C.EBREAK] Cc2

Debuggers can use the C.EBREAK instruction, which expands to ebreak, to cause control to be transferred
back to the debugging environment. c.EBREAK shares the opcode with the c.ADD instruction, but with rd
and rs2 both zero, thus can also use the cr format.

28.6. Usage of C Instructions in LR/SC Sequences

On implementations that support the C extension, compressed forms of the I instructions permitted
inside constrained LR/SC sequences, as described in Section 14.3, are also permitted inside
constrained LR/SC sequences.

The implication is that any implementation that claims to support both the A and C
o extensions must ensure that LR/SC sequences containing valid C instructions will
eventually complete.

28.7. HINT Instructions

A portion of the RVC encoding space is reserved for microarchitectural HINTs. Like the HINTs in the
RV32I base ISA (see HINT Instructions), these instructions do not modify any architectural state,
except for advancing the pc and any applicable performance counters. HINTs are executed as no-ops
on implementations that ignore them.

RVC HINTs are encoded as computational instructions that do not modify the architectural state,
either because rd=xe (e.g. C.ADD x8, t8), or because rd is overwritten with a copy of itself (e.g. c.ADDI to,
0).

6 This HINT encoding has been chosen so that simple implementations can ignore

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.8. RVC Instruction Set Listings | Page 174

HINTs altogether, and instead execute a HINT as a regular computational instruction
that happens not to mutate the architectural state.

RVC HINTs do not necessarily expand to their RVI HINT counterparts. For example, ¢.ADD x®, a® might
not encode the same HINT as AbD x0, x0, a0®.

The primary reason to not require an RVC HINT to expand to an RVI HINT is that
HINTs are unlikely to be compressible in the same manner as the underlying

o computational instruction. Also, decoupling the RVC and RVI HINT mappings allows
the scarce RVC HINT space to be allocated to the most popular HINTs, and in
particular, to HINTs that are amenable to macro-op fusion.

Table 32 lists all RVC HINT code points. For RV32C, 78% of the HINT space is reserved for standard
HINTSs. The remainder of the HINT space is designated for custom HINTSs; no standard HINTs will ever
be defined in this subspace.

Table 40. RVC HINT instructions.

Instruction Constraints Code Points Purpose

C.NOP imm=Q 63

C.ADDI rd=x0, imm=0 31

C.L rd=xa 64 Designated for future
C.LUI rd=x0, imm=0 63 Standard use

C.mVv rd=x0, rs2#x0 31

C.ADD rd=x0, rs2#x0, rs2#x2-x5 27

C.ADD rd=x0, rs2#x2-x5 4 (rs2=x2) C.NTL.P1 (rs2=x3)

C.NTL.PALL (rs2=x4)
C.NTL.S1 (rs2=x5)

C.NTL.ALL
C.SLLI rd=x8, imm=® 31 (RV32), 63 (RV64/128)
CSLLI64 rd=x0 1
C.SLLI64 rd=x0, RV32 and RV64 only 31 Designated for custom use
C.SRLI64 RV32 and RV64 only 8
C.SRAI64 RV32 and RV64 only 8

28.8. RVC Instruction Set Listings

Table 41 shows a map of the major opcodes for RVC. Each row of the table corresponds to one
quadrant of the encoding space. The last quadrant, which has the two least-significant bits set,
corresponds to instructions wider than 16 bits, including those in the base ISAs. Several instructions
are only valid for certain operands; when invalid, they are marked either RES to indicate that the
opcode is reserved for future standard extensions; Custom to indicate that the opcode is designated
for custom extensions; or HINT to indicate that the opcode is reserved for microarchitectural hints
(see Section 28.7).

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.8. RVC Instruction Set Listings | Page 175

Table 41. RVC opcode map instructions.

inst[15:13]
. . 000 001 010 011 100 101 110 111
inst[1:0]
FLD FLW FSD FSW RV32
00 ADDI4SPN FLD LW LD Reserved FSD SW SD RV64
LQ LD SQ SD RV128
JAL RV32
o1 ADDI ADDIW LI LUI/ADDI16SP MISC-ALU J BEQZ BNEZ RV64
ADDIW RV128
FLDSP FLWSP FSDSP FSWSP RV32
10 SLLI FLDSP LWSP LDSP J[AL]JR/MV/ADD FSDSP SWSP SDSP RV64
LQSP LDSP SQSP SDSP RV128
1 >16b

Figure 3, Figure 4, and Figure 5 list the RVC instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000 0 0 00 |Illegal instruction
000 uimm([5:4|9:6]2|3] rd’ 00 C.ADDI4SPN _

RES uimm=0

001 uimm[5:3] rs1’ uimm[7:6] rd’ 00 C'FLD(RV32/64)
001 uimm[5:4|8] rsi uimm[7:6] rd 00 C'LQ(Rvns)
010 uimm[5:3] rs1’ uimm[2|6] rd’ 00 C.LwW
011 uimm[5:3] rs1’ uimm[2]6] rd’ 00 C.FLW(WSZ)
011 uimm[5:3] rs1’ uimm[7:6] rd’ 00 C'LD(R\/64/128)
100 - 00 Reserved
101 uimm[5:3] rs1’ uimm[7:6] rs2’ 00 C'FSD(R\/32/64)
101 uimm[5:4|8] rs1’ uimm[7:6] rs2’ 00 C'SQ(szs)
110 uimm[5:3] rs1’ uimm[2|6] rs2’ 00 C.SW
111 uimm[5:3] rs1’ uimm[2|6] rs2’ 00 C'FSN(Rvsz)
111 uimm[5:3] rs1’ uimm[7:6] rs2’ 00 C.SD(RVMHS)

Figure 3. Instruction listing for RVC, Quadrant ®

The RISC-V Instruction Set Manual Volume I | © RISC-V International

28.8. RVC Instruction Set Listings | Page 176

15 14 13 12 11 10 9 8 4 3
000 imm[5] 0 imm[4:0] 01
000 imm[5] rs1/rd+0 imm[4:0] 01
001 imm(11]4]9:8]10/6|7|3:1|5] 01
001 imm[5] rs1/rd+0 imm([4:0] 01
010 imm[5] rd#0 imm([4:0] 01
011 imm[9] 2 imm[4]6|8:7]5] 01
011 imm[17] rd#{0, 2} imm[16:12] 01
100 uimm([5] 00 rs1'/rd’ uimm([4:0] 01
100 0 00 rs1'/rd’ 0 01
100 uimm[5] 01 rs1'/rd’ uimm[4:0] 01
100 0 01 rs1'/rd’ 0 01
100 imm[5] 10 rs1'/rd’ imm([4:0] 01
100 0 11 rs1'/rd’ 00 rs2’ 01
100 0 11 rs1'/rd’ 01 rs2’ 01
100 0 11 rs1'/rd’ 10 rs2’ 01
100 0 11 rs1'/rd’ 11 rs2’ 01
100 1 11 rs1'/rd’ 00 rs2’ 01
100 1 1M1 rs1'/rd’ 01 rs2’ 01
100 1 11 - 10 --- 01
100 1 11 11 01
101 imm(11]4]9:8]10/6|7|3:1|5] 01
110 imm[8]4:3] rs1’ imm[7:6]2:1]5] 01
111 imm[8]4:3] rs1’ imm[7:6]2:1]5] 01

Figure 4. Instruction listing for RVC, Quadrant 1

The RISC-V Instruction Set Manual Volume I | © RISC-V International

C'NOP(HINT, imm-0)

C'ADDl(HmT, imm=0)

C.JAL)

C.ADDI \N(RV64/128; RES rd=0)

C'LI(HINT. rd=0)

C.ADDI16SP

(RES, imm=0)
CLUI e im0 HINT, d=0)
C-SRLl(mzCusom uimm(5]=1)
C.SRLI64(W12& RV32/64 HINT)
C.SRAl (RV32 Custom, uimm{5]=1)
C.SRAI 64(R\/128; RV32/64 HINT)
C.ANDI

C.SUB

C.XOR

C.OR

C.AND

C-SUBW enzs rvazresy
C.ADDW(FMWIZ& RV32RES
Reserved

Reserved

cJ

C.BEQZ

C.BNEZ

28.8. RVC Instruction Set Listings | Page 177

15 14 13 2 1 10 9 5 4 1
000 uimm(5] rs1/rd+0 uimm[4:0] 10
000 0 rs1/rd+0 0 10
001 uimm[5] rd uimm([4:3|8:6] 10
001 uimm[5] rd+0 uimm[4]9:6] 10
010 uimm[5] rd+0 uimm([4:2|7:6] 10
011 uimm[5] rd uimm[4:2|7:6] 10
011 uimm[5] rd=0 uimm([4:3|8:6] 10
100 0 rs1+0 0 10
100 0 rd+0 rs2+0 10
100 1 0 0 10
100 1 rs1+0 0 10
100 1 rs1/rd=0 rs2+0 10
101 uimm[5:3]8:6] rs2 10
101 uimm[5:4]9:6] rs2 10
110 uimm([5:2|7:6] rs2 10
111 uimm([5:2|7:6] rs2 10
111 uimm[5:3]8:6] rs2 10

C‘S‘LI(HWT, rd=0; Rv32 Custom, uimm([5]=1)

C'S_LIM(WQ& RV32/64 HINT, HINT, rd=0)

C.FLDSP(WSZ’M)

C LQS;(R\/lz& RES rd=0)

CLWS o

CFLVVS:’(M)

C'LDSD(WBA/HB; RES rd=0)

C“]R(RES rs1=0)

C‘MV(HlNT, rd=0)

C.EBREAK

C.JALR

C'ADD(HINT, rd=0)

C.FSDSP (rvaio)

C‘ggsp(wua)

C.SWsP

C'FSNSP(wsz)

C'Sjsj(wzwus)

Figure 5. Instruction listing for RVC, Quadrant 2

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.1. Zc* Overview | Page 178

Chapter 29. "Zc*" Extension for Code Size Reduction, Version
1.0.0

29.1. Zc* Overview

Zc* is a group of extensions that define subsets of the existing C extension (Zca, Zcd, Zcf) and new
extensions which only contain 16-bit encodings.

Zcm* all reuse the encodings for c.fld, c.fsd, c.fldsp, c.fsdsp.

Table 42. Zc* extension overview
Instruction Zca Zcf Zcd Zcb Zcmp Zcmt

The Zca extension is added as way to refer to instructions in the C extension that do not include the
floating-point loads and stores

C excl. c.f* yes

The Zcf extension is added as a way to refer to compressed single-precision floating-point load/stores

c.flw rv32
c.flwsp rv32
c.fsw rv32
c.fswsp rv32

The Zcd extension is added as a way to refer to compressed double-precision floating-point load/stores

c.fld yes
c.fldsp yes
c.fsd yes
c.fsdsp yes

Simple operations for use on all architectures

c.lbu yes
c.lh yes
c.lhu yes
c.sb yes
c.sh yes
c.zext.b yes
c.sext.b yes
c.zext.h yes
c.sext.h yes
c.zextw yes
c.mul yes
c.not yes

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.2. C | Page 179

Instruction Zca Zcf Zcd Zcb Zcmp Zcmt

PUSH/POP and double move which overlap with c.fsdsp. Complex operations intended for embedded
CPUs

cm.push yes
cm.pop yes
cm.popret yes
cm.popretz yes
cm.mva®is yes
cm.mvsa®1 yes

Table jump which overlaps with c.fsdsp. Complex operations intended for embedded CPUs

cm.jt yes
cm.jalt yes
29.2.C

The C extension is the superset of the following extensions:

® Zca
® 7cf if F is specified (RV32 only)
® 7Zcd if D is specified

As C defines the same instructions as Zca, Zcf and Zcd, the rule is that:

® C always implies Zca
® C+F implies Zcf (RV32 only)
® C+D implies Zcd

29.3. Zce
The Zce extension is intended to be used for microcontrollers, and includes all relevant Zc extensions.

® Specifying Zce on RV32 without F includes Zca, Zcb, Zcmp, Zcmt
® Specifying Zce on RV32 with F includes Zca, Zcb, Zcmp, Zcmt and Zcf
® Specifying Zce on RV64 always includes Zca, Zcb, Zcmp, Zcmt

® 7cf doesn’t exist for RV64

Therefore common ISA strings can be updated as follows to include the relevant Zc extensions, for
example:

® RV32IMC becomes RV32IM_Zce
® RV32IMCF becomes RV32IMF_Zce

29.4. MISA.C

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.5. Zca | Page 180
MISA.C is set if the following extensions are selected:

® ZcaandnotF

® 7ca, Zcf and F is specified (RV32 only)

® 7ca, Zcf and Zcd if D is specified (RV32 only)
® this configuration excludes Zcmp, Zcmt

® 7ca, Zcd if D is specified (RV64 only)

® this configuration excludes Zcmp, Zcmt

29.5. Zca

The Zca extension is added as way to refer to instructions in the C extension that do not include the
floating-point loads and stores.

Therefore it excluded all 16-bit floating point loads and stores: c.flw, c.flwsp, c.fsw, c.fswsp, c.fld, c.fldsp,
c.fsd, c.fsdsp.

o the C extension only includes F/D instructions when D and F are also specified

29.6. Zcf (RV32 only)

Zcf is the existing set of compressed single precision floating point loads and stores: c.flw, c.flwsp,
c.fsw, c.fswsp.

Zcf is only relevant to RV32, it cannot be specified for RV64.

The Zcf extension depends on the Zca and F extensions.

29.7. Zcd

Zcd is the existing set of compressed double precision floating point loads and stores: c.fld, c.fldsp,
c.fsd, c.fsdsp.

The Zcd extension depends on the Zca and D extensions.

29.8. Zcb
Zcb has simple code-size saving instructions which are easy to implement on all CPUs.

All encodings are currently reserved for all architectures, and have no conflicts with any existing
extensions.

o Zcb can be implemented on any CPU as the instructions are 16-bit versions of
existing 32-bit instructions from the application class profile.

The Zcb extension depends on the Zca extension.

As shown on the individual instruction pages, many of the instructions in Zcb depend upon another
extension being implemented. For example, c.mul is only implemented if M or Zmmul is implemented,

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.8. Zcb | Page 181

and c.sext.b is only implemented if Zbb is implemented.

The c.mul encoding uses the CA register format along with other instructions such as c.sub, c.xor etc.

0

RV32 RV64
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes
yes yes

yes
yes yes
yes yes

c.sext.w is a pseudoinstruction for c.addiw rd, ® (RV64)

Mnemonic

c.lbu rd', uimm(rs7')
c.lhu rd', uimm(rs7')
c.lh rd', uimm(rs1')
c.sb rs2', uimm(rs7')
c.sh rs2', uimm(rs17)
c.zext.b rsd'
c.sext.b rsd'
c.zext.h rsd'
c.sext.h rsd'
c.zext.w rsd'

c.not rsd'

c.mul rsd’, rs2'

Instruction

Load unsigned byte, 16-bit encoding
Load unsigned halfword, 16-bit encoding
Load signed halfword, 16-bit encoding
Store byte, 16-bit encoding

Store halfword, 16-bit encoding

Zero extend byte, 16-bit encoding
Sign extend byte, 16-bit encoding
Zero extend halfword, 16-bit encoding
Sign extend halfword, 16-bit encoding
Zero extend word, 16-bit encoding
Bitwise not, 16-bit encoding

Multiply, 16-bit encoding

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.9. Zcmp | Page 182

29.9. Zcmp

The Zcmp extension is a set of instructions which may be executed as a series of existing 32-bit RISC-
V instructions.

This extension reuses some encodings from c.fsdsp. Therefore it is incompatible with Zcd, which is
included when C and D extensions are both present.

0 Zcmp is primarily targeted at embedded class CPUs due to implementation
complexity. Additionally, it is not compatible with architecture class profiles.

The Zcmp extension depends on the Zca extension.
The PUSH/POP assembly syntax uses several variables, the meaning of which are:

® reg_list is a list containing 1 to 13 registers (ra and O to 12 s registers)
® valid values: {ra}, {ra, s0}, {ra, sO-s1}, {ra, s0-s2}, ..., {ra, sO-s8}, {ra, sO-s9}, {ra, sO-s11}
® note that {ra, s®-s10} is not valid, giving 12 lists not 13 for better encoding

® stack_adj is the total size of the stack frame.

® valid values vary with register list length and the specific encoding, see the instruction pages
for details.

RV32 RV64 Mnemonic Instruction
yes yes cm.push {reg_list}, -stack_adj = cm.push
yes yes cm.pop {reg_list}, stack_adj cm.pop
yes yes cm.popret {reg_list}, stack_adj cm.popret

yes yes cm.popretz {reg_list}, stack_adj cm.popretz
yes yes cm.mvaO®ls rs7, rs2' Move two s0-s7 registers into a®-a1

yes yes cm.mvsa®1ris’, r2s' Move a®-al into two different s®-s7 registers

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.10. Zcmt | Page 183

29.10. Zcmt

Zcmt adds the table jump instructions and also adds the jvt CSR. The jvt CSR requires a state enable if
Smstateen is implemented. See jvt CSR, table jump base vector and control register for details.

This extension reuses some encodings from c.fsdsp. Therefore it is incompatible with Zcd, which is
included when C and D extensions are both present.

e Zcmt is primarily targeted at embedded class CPUs due to implementation
complexity. Additionally, it is not compatible with RVA profiles.

The Zcmt extension depends on the Zca and Zicsr extensions.

RV32 RV64 Mnemonic Instruction
yes yes cm.jt index Jump via table
yes yes cm.jalt index Jump and link via table

29.11. Zc instruction formats

Several instructions in this specification use the following new instruction formats.

Format instructions 15:10 9 8 7 6 5 4 3 2 1 o

CLB c.lbu funct6 rst' uimm rd' op

CSB c.sb funct6 rst uimm rs2' op

CLH c.lhuy, c.lh funct6 rsi' funct uim rd' op
1 m

CSH c.sh funct6 rst funct uim rs2' op
1 m

Cu c.[sz]ext.*, c.not funct6 rd'/rst' funct5 op

CMMV cm.mvsa®1 funct6 ris' funct2 r2s' op

cm.mva®1s
CMJT cm.jt cm.jalt funct6 index op
CMPP cm.push*, cm.pop* funct6 funct2 urlist spimm op
o c.mul uses the existing CA format.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 184

29.12. Zcb instructions

29.12.1. c.lbu

Synopsis:

Load unsigned byte, 16-bit encoding
Mnemonic:

c.lbu rd', uimm(rs1')

Encoding (RV32, RV64):

6 5

15 13 12 10
1 0 0 o o 0

rst'

uimm[0|1]

rd'

FUNCT3

The immediate offset is formed as follows:

vimm[31:2] = 0;

uimm([1] = encoding[5];

uimm[0O] = encoding[é6];
Description:

co

This instruction loads a byte from the memory address formed by adding rs7' to the zero extended

immediate uimm. The resulting byte is zero extended to XLEN bits and is written to rd".

o rd" and rs1' are from the standard 8-register set x8-x15.

Prerequisites:
None

Operation:

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

X(rdc) = EXTZ(mem[X(rs1c)+EXTZ(uimm)]1[7..08]1);

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 185
29.12.2. c.lhu
Synopsis:
Load unsigned halfword, 16-bit encoding
Mnemonic:
c.lhu rd', uimm(rs1')
Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1

1 0 0 0 o 1 rs1' 0 uimmI[1] rd' 0 0
FUNCT3 Cco

The immediate offset is formed as follows:

vimm[31:2] = 0O;

uimm[1] = encoding[5];

uimm[0] = 0;
Description:

This instruction loads a halfword from the memory address formed by adding rs7' to the zero extended
immediate uimm. The resulting halfword is zero extended to XLEN bits and is written to rd".

o rd" and rs1' are from the standard 8-register set x8-x15.
Prerequisites:
None

Operation:

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

X(rdc) = EXTZ(load_mem[X(rs1c)+EXTZ(uimm)]1[15..0]1);

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 186

29.12.3. c.lh

Synopsis:

Load signed halfword, 16-bit encoding
Mnemonic:

c.lh rd', uimm(rs1')

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1]] Y] Y] 1 rst' 1 juimm[1] rd']]
FUNCT3 co

The immediate offset is formed as follows:

vimm[31:2] = 0O;

uimm[1] = encoding[5];

uimm[0] = 0;
Description:

This instruction loads a halfword from the memory address formed by adding rs7' to the zero extended
immediate uimm. The resulting halfword is sign extended to XLEN bits and is written to rd".

o rd" and rs1' are from the standard 8-register set x8-x15.
Prerequisites:
None

Operation:

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

X(rdc) = EXTS(load_mem[X(rs1c)+EXTZ(uimm)]1[15..0]1);

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 187
29.12.4. c.sb
Synopsis:
Store byte, 16-bit encoding
Mnemonic:
c.sb rs2', uimm(rs1')
Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1]] Y] 1] rst' uimm[0|1] rs2']]
FUNCT3 co

The immediate offset is formed as follows:

vimm[31:2] = 0O;

uimm[1] = encoding[5];

uimm([0O] = encoding[6];
Description:

This instruction stores the least significant byte of rs2' to the memory address formed by adding rs7' to
the zero extended immediate uimm.

o rs1"and rs2' are from the standard 8-register set x8-x15.
Prerequisites:
None

Operation:

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

mem[X(rs1c)+EXTZ(uimm)1[7..08] = X(rs2c)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 188
29.12.5. c.sh

Synopsis:

Store halfword, 16-bit encoding
Mnemonic:

c.sh rs2', uimm(rs1')

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1))) 1 1 rs1' O juimm[1] rs2' 0 0
FUNCT3 Cco

The immediate offset is formed as follows:

vimm[31:2] = 0O;

uimm[1] = encoding[5];

uimm[0] = 0;
Description:

This instruction stores the least significant halfword of rs2' to the memory address formed by adding
rs1' to the zero extended immediate uimm.

o rs1"and rs2' are from the standard 8-register set x8-x15.
Prerequisites:
None

Operation:

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

mem[X(rs1c)+EXTZ(uimm)]1[15..08] = X(rs2c)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 189
29.12.6. c.zext.b
Synopsis:
Zero extend byte, 16-bit encoding
Mnemonic:
c.zext.b rd"/rsT

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 o
1 o o 1 1 1 rd'/rst 1 1 o o o o 1
FUNCT3 SRCDST FUNCT2 C.ZEXT.B C1
Description:

This instruction takes a single source/destination operand. It zero-extends the least-significant byte of
the operand to XLEN bits by inserting zeros into all of the bits more significant than 7.

o rd/rs1'is from the standard 8-register set x8-x15.
Prerequisites:
None

32-bit equivalent:

andi rd'/rs1', rd'/rsl', Oxff

o The SAIL module variable for rd'/rs1' is called rsdc.

Operation:

X(rsdc) = EXTZ(X(rsdc)[7..0]1);

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 190
29.12.7. c.sext.b

Synopsis:

Sign extend byte, 16-bit encoding
Mnemonic:

c.sext.b rd"/rsT'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 o
1 o o 1 1 1 rd'/rst 1 1 o o 1 o 1
FUNCT3 SRCDST FUNCT2 C.SEXT.B C1
Description:

This instruction takes a single source/destination operand. It sign-extends the least-significant byte in
the operand to XLEN bits by copying the most-significant bit in the byte (i.e., bit 7) to all of the more-
significant bits.

o rd'/rs1'is from the standard 8-register set x8-x15.
Prerequisites:
Zbb is also required.

o The SAIL module variable for rd'/rs1'is called rsdc.

Operation:

X(rsdc) = EXTS(X(rsdc)[7..08]1);

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 191
29.12.8. c.zext.h
Synopsis:
Zero extend halfword, 16-bit encoding
Mnemonic:
c.zext.h rd"/rsT

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 o
1 o o 1 1 1 rd'/rst 1 1 o 1 o o 1
FUNCT3 SRCDST FUNCT2 C.ZEXTH C1
Description:

This instruction takes a single source/destination operand. It zero-extends the least-significant
halfword of the operand to XLEN bits by inserting zeros into all of the bits more significant than 15.

o rd/rs1'is from the standard 8-register set x8-x15.
Prerequisites:
Zbb is also required.

o The SAIL module variable for rd'/rs1' is called rsdc.

Operation:

X(rsdc) = EXTZ(X(rsdc)[15..0]);

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 192

29.12.9. c.sext.h

Synopsis:

Sign extend halfword, 16-bit encoding
Mnemonic:

c.sext.h rd/rsT

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 o
1 o o 1 1 1 rd'/rst 1 1 o 1 1 o 1
FUNCT3 SRCDST FUNCT2 C.SEXTH C1
Description:

This instruction takes a single source/destination operand. It sign-extends the least-significant
halfword in the operand to XLEN bits by copying the most-significant bit in the halfword (i.e., bit 15) to
all of the more-significant bits.

o rd'/rs1'is from the standard 8-register set x8-x15.
Prerequisites:
Zbb is also required.

o The SAIL module variable for rd'/rs1'is called rsdc.

Operation:

X(rsdc) = EXTS(X(rsdc)[15..0]1);

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 193
29.12.10. c.zext.w
Synopsis:
Zero extend word, 16-bit encoding
Mnemonic:
c.zextw rd’/rsT

Encoding (RV64):

15 13 12 10 9 7 6 5 4 2 1 o
1 o o 1 1 1 rd'/rst 1 1 1 o o o 1
FUNCT3 SRCDST FUNCT2 C.ZEXT.W C1
Description:

This instruction takes a single source/destination operand. It zero-extends the least-significant word
of the operand to XLEN bits by inserting zeros into all of the bits more significant than 31.

o rd/rs1'is from the standard 8-register set x8-x15.
Prerequisites:
Zba is also required.

32-bit equivalent:

add.uw rd'/rsl1', rd'/rsl', zero

o The SAIL module variable for rd'/rs1' is called rsdc.

Operation:

X(rsdc) = EXTZ(X(rsdc)[31..0]);

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 194
29.12.11. c.not

Synopsis:

Bitwise not, 16-bit encoding
Mnemonic:

c.not rd"/rst'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1 o o 1 1 1 rd'/rst 1 1 1 o 1 o
FUNCT3 SRCDST FUNCT2 C.NOT C1
Description:

This instruction takes the one’s complement of rd'/rs1' and writes the result to the same register.
o rd'/rs1' is from the standard 8-register set x8-x15.

Prerequisites:

None

32-bit equivalent:

xori rd'/rs1', rd'/rsl', -1
o The SAIL module variable for rd'/rs1' is called rsdc.
Operation:

X(rsdc) = X(rsdc) XOR -1;

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.12. Zcb instructions | Page 195
29.12.12. c.mul
Synopsis:
Multiply, 16-bit encoding
Mnemonic:
c.mul rsd', rs2'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 o
1 o o 1 1 1 rd'/rst 1 o rs2' o 1
FUNCT3 SRCDST FUNCT2 SRC2 C1
Description:

This instruction multiplies XLEN bits of the source operands from rsd' and rs2' and writes the lowest
XLEN bits of the result to rsd".

e rd/rs1' and rs2' are from the standard 8-register set x8-x15.
Prerequisites:
M or Zmmul must be configured.
o The SAIL module variable for rd'/rs1'is called rsdc, and for rs2'is called rs2c.

Operation:

let result_wide = to_bits(2 * sizeof(xlen), signed(X(rsdc)) * signed(X(rs2c)));
X(rsdc) = result_wide[(sizeof(xlen) - 1) .. 0O];

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 196

29.13. PUSH/POP register instructions
These instructions are collectively referred to as PUSH/POP:

® cm.push
® cm.pop
® cm.popret

® cm.popretz
The term PUSH refers to cm.push.
The term POP refers to cm.pop.
The term POPRET refers to cm.popret and cm.popretz.

Common details for these instructions are in this section.

29.13.1. PUSH/POP functional overview
PUSH, POP, POPRET are used to reduce the size of function prologues and epilogues.

1. The PUSH instruction

® adjusts the stack pointer to create the stack frame

® pushes (stores) the registers specified in the register list to the stack frame
2. The POP instruction

® pops (loads) the registers in the register list from the stack frame

® adjusts the stack pointer to destroy the stack frame
3. The POPRET instructions

® pop (load) the registers in the register list from the stack frame

® cm.popretz also moves zero into a® as the return value

® adjust the stack pointer to destroy the stack frame

® execute a ret instruction to return from the function

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 197
29.13.2. Example usage
This example gives an illustration of the use of PUSH and POPRET.

The function processMarkers in the EMBench benchmark picojpeg in the following file on github:
libpicojpeg.c

The prologue and epilogue compile with GCC10 to:

0001098a <processMarkers>:

1098a: 711d addi sp,sp,-96 ;#cm.push(1)
1098c: c8ca SW s2,80(sp) ;#cm.push(2)
1098e: cébce sw s3,76(sp) ;#cm.push(3)
10990: c4d?2 SwW s4,72(sp) ;#cm.push(4)
10992: ce86 sw ra,92(sp) ;#cm.push(5)
10994: cca?2 SW s0,88(sp) ;#cm.push(6)
10996: caab sw s1,84(sp) ;#cm.push(7)
10998: c2dé SwW s5,68(sp) ;#cm.push(8)
1099a: cOda sw s6,64(sp) ;#cm.push(9)
1099c: de5e SW s7,60(sp) ;#cm.push(10)
1099e: dc62 sw s8,56(sp) ;#cm.push(11)
109a0: daééb SwW s9,52(sp) ;#cm.push(12)
109a2: d86a sw s10,48(sp) ;#cm.push(13)
109a4: déée sw s11,44(sp) ;#cm.push(14)
109F4: 4501 1i a0,on ;#cm.popretz(1)
109f6: 40F6 w ra,92(sp) ;#cm.popretz(2)
1098: 4466 w s0,88(sp) ;#cm.popretz(3)
109fa: 44d6 w s1,84(sp) ;#cm.popretz(4)
109fc: 4946 w s2,80(sp) ;#cm.popretz(5)
109fe: 49b6 w s3,76(sp) ;#cm.popretz(6)
10a00: 4a26 w s4,72(sp) ;#cm.popretz(7)
10a02: 4a96 w s5,68(sp) ;#cm.popretz(8)
10a04: 4b06 w s6,64(sp) ;#cm.popretz(9)
10a06: 5bf2 w s7,60(sp) ;#cm.popretz(10)
10a08: 5c62 w s8,56(sp) ;#cm.popretz(11)
10a0a: 5cd?2 w s9,52(sp) ;#cm.popretz(12)
10a0c: 5d42 w s10,48(sp) ;#cm.popretz(13)
10a0e: 5db2 w s11,44(sp) ;#cm.popretz(14)
10a10: 6125 addi sp,sp,96 ;#cm.popretz(15)
10al12: 8082 ret ;#cm.popretz(16)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

https://github.com/embench/embench-iot/blob/master/src/picojpeg/libpicojpeg.c

29.13. PUSH/POP register instructions | Page 198

with the GCC option -msave-restore the output is the following:

0001080e <processMarkers>:

1080e: 73a012ef jal t0,11f48 <__riscv_save_12>
10812: 1101 addi sp,sp,-32

10862: 4501 1i ao,0

10864: 6105 addi sp,sp,32

10866: 71e0106F Jj 11f84 <__riscv_restore_12>

with PUSH/POPRET this reduces to

0001080e <processMarkers>:
1080e: b8fa cm.push {ra,s0-s11},-96

10866: bcfa cm.popretz {ra,s0-sl1l1}, 96

The prologue / epilogue reduce from 60-bytes in the original code, to 14-bytes with -msave-restore,
and to 4-bytes with PUSH and POPRET. As well as reducing the code-size PUSH and POPRET
eliminate the branches from calling the millicode save/restore routines and so may also perform
better.

The calls to <riscv_save_0>/<riscv_restore_0> become 64-bit when the target

0 functions are out of the +1MB range, increasing the prologue/epilogue size to 22-
bytes.

o POP is typically used in tail-calling sequences where ret is not used to return to ra
after destroying the stack frame.

29.13.2.1. Stack pointer adjustment handling

The instructions all automatically adjust the stack pointer by enough to cover the memory required for
the registers being saved or restored. Additionally the spimm field in the encoding allows the stack
pointer to be adjusted in additional increments of 16-bytes. There is only a small restricted range
available in the encoding; if the range is insufficient then a separate c.addi’6sp can be used to
increase the range.

29.13.2.2. Register list handling
There is no support for the {ra, s®-s10} register list without also adding s771. Therefore the {ra, s®-s17}
register list must be used in this case.

29.13.3. PUSH/POP Fault handling

Correct execution requires that sp refers to idempotent memory (also see Non-idempotent memory
handling), because the core must be able to handle traps detected during the sequence. The entire
PUSH/POP sequence is re-executed after returning from the trap handler, and multiple traps are
possible during the sequence.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 199

If a trap occurs during the sequence then xEPC is updated with the PC of the instruction, xTVAL (if not
read-only-zero) updated with the bad address if it was an access fault and xCAUSE updated with the
type of trap.

o It is implementation defined whether interrupts can also be taken during the
sequence execution.

29.13.4. Software view of execution

29.13.4.1. Software view of the PUSH sequence
From a software perspective the PUSH sequence appears as:

® A sequence of stores writing the bytes required by the pseudocode
® The bytes may be written in any order.
® The bytes may be grouped into larger accesses.
® Any of the bytes may be written multiple times.
® A stack pointer adjustment
If an implementation allows interrupts during the sequence, and the interrupt handler
o uses sp to allocate stack memory, then any stores which were executed before the

interrupt may be overwritten by the handler. This is safe because the memory is
idempotent and the stores will be re-executed when execution resumes.

The stack pointer adjustment must only be committed only when it is certain that the entire PUSH
instruction will commit.

Stores may also return imprecise faults from the bus. It is platform defined whether the core
implementation waits for the bus responses before continuing to the final stage of the sequence, or
handles errors responses after completing the PUSH instruction.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 200

For example:

cm.push {ra, s0-s5}, -64

Appears to software as:

any bytes from sp-1 to sp-28 may be written multiple times before

the instruction completes therefore these updates may be visible in
the interrupt/exception handler below the stack pointer

sw s5, -4(sp)

sw s4, -8(sp)

sw s3,-12(sp)

sw s2,-16(sp)

sw s1,-20(sp)

sw s0,-24(sp)

sw ra,-28(sp)

this must only execute once, and will only execute after all stores
completed without any precise faults, therefore this update is only
visible in the interrupt/exception handler if cm.push has completed
addi sp, sp, -64

29.13.4.2. Software view of the POP/POPRET sequence

From a software perspective the POP/POPRET sequence appears as:

® A sequence of loads reading the bytes required by the pseudocode.
® The bytes may be loaded in any order.
® The bytes may be grouped into larger accesses.
® Any of the bytes may be loaded multiple times.
® A stack pointer adjustment
® An optional 1i a0, ©
® An optional ret
If a trap occurs during the sequence, then any loads which were executed before the trap may update
architectural state. The loads will be re-executed once the trap handler completes, so the values will be

overwritten. Therefore it is permitted for an implementation to update some of the destination
registers before taking a fault.

The optional 1i a0, 6, stack pointer adjustment and optional ret must only be committed only when it
is certain that the entire POP/POPRET instruction will commit.

For POPRET once the stack pointer adjustment has been committed the ret must execute.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

For example:

cm.popretz {ra, s0-s3}, 32;

Appears to software as:

29.13. PUSH/POP register instructions | Page 201

any or all of these load instructions may execute multiple times
therefore these updates may be visible in the interrupt/exception handler

w
w
w
w
w

s3,
s2,
s1,
s0,
ra,

28(sp)
24(sp)
20(sp)
16(sp)
12(sp)

these must only execute once, will only execute after all loads
complete successfully all instructions must execute atomically
therefore these updates are not visible in the interrupt/exception handler

1i a0, O
addi sp, sp, 32
ret

29.13.5. Non-idempotent memory handling

An implementation may have a requirement to issue a PUSH/POP instruction to non-idempotent
memory.

If the core implementation does not support PUSH/POP to non-idempotent memories, the core may
use an idempotency PMA to detect it and take a load (POP/POPRET) or store (PUSH) access fault
exception in order to avoid unpredictable results.

Software should only use these instructions on non-idempotent memory regions when software can
tolerate the required memory accesses being issued repeatedly in the case that they cause exceptions.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 202
29.13.6. Example RV32I PUSH/POP sequences

The examples are included show the load/store series expansion and the stack adjustment. Examples
of cm.popret and cm.popretz are not included, as the difference in the expanded sequence from
cm.pop is trivial in all cases.

29.13.6.1. cm.push {ra, s0-s2}, -64
Encoding: rlist=7, spimm=3

expands to:

sw s2, -4(sp);
sw s1, -8(sp);
sw s0, -12(sp);
sw ra, -16(sp);
addi sp, sp, -64;

29.13.6.2. cm.push {ra, s@-s11}, -112
Encoding: rlist=15, spimm=3

expands to:

sw sl11, -4(sp);
sw s10, -8(sp);
sw s9, -12(sp);
sw s8, -16(sp);
sw s7, -20(sp);
sw sé6, -24(sp);
sw s5, -28(sp);
sw s4, -32(sp);
sw s3, -36(sp);
sw s2, -40(sp);
sw s1, -44(sp);
sw s0, -48(sp);
sw ra, -52(sp);
addi sp, sp, -112;

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13.6.3. cm.pop {ra}, 16

Encoding: rlist=4, spimm=0

expands to:

w

29.13.6.4. cm.pop {ra, s0-s3}, 48

Encoding: rlist=8, spimm=1

ra, 12(sp);
addi sp, sp, 16;

expands to:
w s3,
w s2,
w s,
w s0,
w ra,
addi sp,

29.13.6.5. cm.pop {ra, sO-s4}, 64

Encoding: rlist=9, spimm=2

expands to:
w s4,
w s3,
w s2,
1w s,
w s0,
w ra,
addi sp,

44(sp);
40(sp);
36(sp);
32(sp);
28(sp);
sp, 48;

60(sp);
56(sp);
52(sp);
48(sp);
44(sp);
40(sp);
sp, 64;

29.13. PUSH/POP register instructions | Page 203

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 204
29.13.7. cm.push
Synopsis:

Create stack frame: store ra and ® to 12 saved registers to the stack frame, optionally allocate
additional stack space.

Mnemonic:
cm.push {reg_list}, -stack_adj

Encoding (RV32, RV64):

15 13 12 8 7 4 3 2 1 0
1] 1 1 1 o o o rlist spimm([5:4] 1
FUNCT3 c2
0 rlist values O to 3 are reserved for a future EABI variant called cm.push.e

Assembly Syntax:

cm.push {reg_1list}, -stack_adj
cm.push {xreg_list}, -stack_adj

The variables used in the assembly syntax are defined below.

RV32E:

switch (rlist){

case 4: {reg_list="ra"; xreg_list="x1";}
case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
case 6: {reg_list="ra, s0-sl1"; xreg_list="x1, x8-x9";}
default: reserved();

}

stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RVé64:

switch (rlist){

case 4: {reg_list="ra"; xreg_list="x1";}

case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s0-sl1"; xreg_list="x1, x8-x9";}

case 7: {reg_list="ra, s0-s2"; xreg_list="x1, x8-x9, x18";}
case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}
case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}

case 10: {reg_list="ra, s0-s5"; xreg_list="x1, x8-x9, x18-x21";}
case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
case 12: {reg_list="ra, s0-s7"; xreg_list="x1, x8-x9, x18-x23";}
case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 205

case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
//note - to include s10, sl11 must also be included

case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
default: reserved();

+
stack_adj

RV32E:

stack_adj_base

Valid values:

stack_adj

RV32I:

switch (rlist)
7:

case 4..
case 8..11:
case 12..14:
case 15:

e

Valid values:

switch (rlist)
case 4..
case 8..11:
case 12..14:
case 15:

e

RV64:

switch (rlist)
S:
7:
9:
11

case 4..
case 6..
case 8..
case 10.
case 12.
case

case

7:

13
14:
15:

Valid values:

switch (rlist)
case 4..
case 6..

S:
7:

16;

{

stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base

{

stack_adj
stack_adj
stack_adj
stack_adj

{

stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base

{
stack_adj
stack_adj

[16132]48]64];

stack_adj_base + spimm[5:4] * 16;

16;
32;
48;
64;

[16]132]48] 64];
[32]48]64] 80];
[48|64]80] 961;
[64]80]961112];

16;
32;
48;
64;
80;
96;
112;

[16] 32| 48] 64];
[32] 48] 64| 80];

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 206

[48] 64| 80| 96];
[64| 80| 96]112];
[80] 96]112]128];
[961112[128]|144];
[112]128]|144|160];

case 8.. 9: stack_adj
case 10..11: stack_adj
case 12..13: stack_adj
case 14: stack_adj
case 15: stack_adj

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 207

Description:

This instruction pushes (stores) the registers in reg_list to the memory below the stack pointer, and
then creates the stack frame by decrementing the stack pointer by stack_adj, including any additional
stack space requested by the value of spimm.

e All ABI register mappings are for the UABI. An EABI version is planned once the
EABI is frozen.

For further information see PUSH/POP Register Instructions.
Stack Adjustment Calculation:

stack_adj_base is the minimum number of bytes, in multiples of 16-byte address increments, required
to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base added
to spimm scaled by 16, as defined above.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists
Operation:

The first section of pseudocode may be executed multiple times before the instruction successfully
completes.

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.
if (XLEN==32) bytes=4; else bytes=8;

addr=sp-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
//if register i is in xreg_list
if (xreg_list[i]) {
switch(bytes) {
4: asm("sw x[1i], 0(Caddr)");
8: asm("sd x[i], 0(Caddr)");
}
addr-=bytes;

The final section of pseudocode executes atomically, and only executes if the section above completes
without any exceptions or interrupts.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 208

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

sp-=stack_adj;

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 209
29.13.8. cm.pop
Synopsis:

Destroy stack frame: load ra and ® to 12 saved registers from the stack frame, deallocate the stack
frame.

Mnemonic:
cm.pop {reg_list}, stack_adj

Encoding (RV32, RV64):

15 13 12 8 7 4 3 2 1 0
1] 1 1 1 o 1 o rlist spimm([5:4] 1
FUNCT3 c2
0 rlist values O to 3 are reserved for a future EABI variant called cm.pop.e

Assembly Syntax:

cm.pop {reg_list}, stack_adj
cm.pop {xreg_list}, stack_adj

The variables used in the assembly syntax are defined below.

RV32E:

switch (rlist){

case 4: {reg_list="ra"; xreg_list="x1";}
case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
case 6: {reg_list="ra, s0-sl1"; xreg_list="x1, x8-x9";}
default: reserved();

}

stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RVé64:

switch (rlist){

case 4: {reg_list="ra"; xreg_list="x1";}

case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s0-sl1"; xreg_list="x1, x8-x9";}

case 7: {reg_list="ra, s0-s2"; xreg_list="x1, x8-x9, x18";}
case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}
case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}

case 10: {reg_list="ra, s0-s5"; xreg_list="x1, x8-x9, x18-x21";}
case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
case 12: {reg_list="ra, s0-s7"; xreg_list="x1, x8-x9, x18-x23";}
case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 210

case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
//note - to include s10, sl11 must also be included
case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
default: reserved();
}
stack_adj

stack_adj_base + spimm[5:4] * 16;

RV32E:

stack_adj_base 16;
Valid values:

stack_adj

[16132]48]64];

RV32I:

switch (rlist) {
case 4.. 7: stack_adj_base = 16;

case 8..11: stack_adj_base = 32;
case 12..14: stack_adj_base = 48;
case 15: stack_adj_base = 64;

Valid values:

switch (rlist) {
case 4.. 7: stack_adj
case 8..11: stack_adj
case 12..14: stack_adj
case 15: stack_adj

[16]132]48] 64];
[32]48]64] 80];
[48|64]80] 961;
[64]80]961112];

RV64:

switch (rlist) {
case 4.. 5: stack_adj_base = 16;
case 6.. 7: stack_adj_base = 32;
case 8.. 9: stack_adj_base = 48;
case 10..11: stack_adj_base = 64;
case 12..13: stack_adj_base = 80;
case 14: stack_adj_base = 96;
case 15: stack_adj_base = 112;

Valid values:

switch (rlist) {
case 4.. 5: stack_adj
case 6.. 7: stack_adj

[16] 32| 48] 64];
[32] 48] 64| 80];

The RISC-V Instruction Set Manual Volume I | © RISC-V International

case
case
case
case
case

10.
12.

. 9: stack_adj
11
.13:
14:
15:

stack_adj
stack_adj
stack_adj
stack_adj

29.13. PUSH/POP register instructions | Page 211

[48] 64| 80| 96];
[64| 80| 96]112];
[80] 96]112]128];
[961112[128]|144];
[112]128]|144|160];

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 212

Description:

This instruction pops (loads) the registers in reg_list from stack memory, and then adjusts the stack
pointer by stack_adj.

o All ABI register mappings are for the UABI. An EABI version is planned once the
EABI is frozen.

For further information see PUSH/POP Register Instructions.
Stack Adjustment Calculation:

stack_adj_base is the minimum number of bytes, in multiples of 16-byte address increments, required
to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base added
to spimm scaled by 16, as defined above.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists
Operation:

The first section of pseudocode may be executed multiple times before the instruction successfully
completes.

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.
if (XLEN==32) bytes=4; else bytes=8;

addr=sp+stack_adj-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
//if register i is in xreg_list
if (xreg_list[i]) {
switch(bytes) {
4: asm("lww x[i], 0(Caddr)");
8: asm("ld x[i], 0(Caddr)");
}
addr-=bytes;
}
}

The final section of pseudocode executes atomically, and only executes if the section above completes
without any exceptions or interrupts.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 213

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

sp+=stack_adj;

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 214
29.13.9. cm.popretz
Synopsis:

Destroy stack frame: load ra and ® to 12 saved registers from the stack frame, deallocate the stack
frame, move zero into a®, return to ra.

Mnemonic:
cm.popretz {reg_list}, stack_adj

Encoding (RV32, RV64):

15 13 12 8 7 4 3 2 1 0
1] 1 1 1 1 o o rlist spimm([5:4] 1
FUNCT3 c2
0 rlist values O to 3 are reserved for a future EABI variant called cm.popretz.e

Assembly Syntax:

cm.popretz {reg_list}, stack_adj
cm.popretz {xreg_list}, stack_adj

RV32E:

switch (rlist){

case 4: {reg_list="ra"; xreg_list="x1";}
case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
case 6: {reg_list="ra, s0-sl1"; xreg_list="x1, x8-x9";}
default: reserved();

}

stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RVé64:

switch (rlist){

case 4: {reg_list="ra"; xreg_list="x1";}

case 5: {reg_list="ra, sO0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s0-sl1"; xreg_list="x1, x8-x9";}

case 7: {reg_list="ra, s0-s2"; xreg_list="x1, x8-x9, x18";}
case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}
case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}

case 10: {reg_list="ra, s0-s5"; xreg_list="x1, x8-x9, x18-x21";}
case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
case 12: {reg_list="ra, s0-s7"; xreg_list="x1, x8-x9, x18-x23";}
case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}
case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
//note - to include s10, sl11 must also be included

The RISC-V Instruction Set Manual Volume I | © RISC-V International

case

default:

}.

29.13. PUSH/POP register instructions | Page 215

15: {reg_list="ra, s0-sl11"; xreg_list="x1, x8-x9, x18-x27";}

stack_adj

RV32E:

stack_adj_base

Valid values:

stack_adj

RV32I:

switch (rlist)
case 4.. 7:
case 8..11:
case 12..14:
case 15:

}

Valid values:

switch (rlist)
case 4.. 7:
case 8..11:
case 12..14:
case 15:

}

RV64:

switch (rlist)
case 4.. 5:
case 6.. 7:
case 8.. 9:
case 10..11:
case 12..13:
case 14:
case 15:

}

Valid values:

switch (rlist)
case 4.. 5:
case 6.. 7:
case 8.. 9:
case 10..11:

reserved();

16;

{

stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base

{

stack_adj
stack_adj
stack_adj
stack_adj

{

stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base
stack_adj_base

{

stack_adj
stack_adj
stack_adj
stack_adj

[16132]48]64];

stack_adj_base + spimm[5:4] * 16;

16;
32;
48;
64;

[16]132]48] 64];
[32]148]64] 80];
[48]|64]80] 961;
[64]80]96]112];

16;
32;
48;
64;
80;
96;
112;

[16] 32| 48] 64];
[32] 48] 64] 80];
[48] 64] 80| 96];
[64] 801 96]112];

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 216

[80] 96]112]128];
[961112]|128]144];
[112]128]144]160];

case 12..13: stack_adj
case 14: stack_adj
case 15: stack_adj

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 217

Description:

This instruction pops (loads) the registers in reg_list from stack memory, adjusts the stack pointer by
stack_adj, moves zero into a® and then returns to ra.

o All ABI register mappings are for the UABI. An EABI version is planned once the
EABI is frozen.
For further information see PUSH/POP Register Instructions.

Stack Adjustment Calculation:

stack_adj_base is the minimum number of bytes, in multiples of 16-byte address increments, required
to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base added
to spimm scaled by 16, as defined above.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists
Operation:

The first section of pseudocode may be executed multiple times before the instruction successfully
completes.

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.
if (XLEN==32) bytes=4; else bytes=8;

addr=sp+stack_adj-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
//if register i is in xreg_list
if (xreg_list[i]) {
switch(bytes) {
4: asm("lww x[i], 0(Caddr)");
8: asm("ld x[i], 0(Caddr)");
}
addr-=bytes;
}
}

The final section of pseudocode executes atomically, and only executes if the section above completes
without any exceptions or interrupts.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 218

o The li a®, ® could be executed more than once, but is included in the atomic section
for convenience.

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.
asm("1i a0, 0");

sp+=stack_adj;
asm("ret");

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 219
29.13.10. cm.popret
Synopsis:

Destroy stack frame: load ra and ® to 12 saved registers from the stack frame, deallocate the stack
frame, return to ra.

Mnemonic:
cm.popret {reg_list}, stack_adj

Encoding (RV32, RV64):

15 13 12 8 7 4 3 2 1 0
1] 1 1 1 1 1 o rlist spimm([5:4] 1
FUNCT3 c2
0 rlist values O to 3 are reserved for a future EABI variant called cm.popret.e

Assembly Syntax:

cm.popret {reg_list}, stack_adj
cm.popret {xreg_list}, stack_adj

The variables used in the assembly syntax are defined below.

RV32E:

switch (rlist){

case 4: {reg_list="ra"; xreg_list="x1";}
case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}
case 6: {reg_list="ra, s0-sl1"; xreg_list="x1, x8-x9";}
default: reserved();

}

stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RVé64:

switch (rlist){

case 4: {reg_list="ra"; xreg_list="x1";}

case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s0-sl1"; xreg_list="x1, x8-x9";}

case 7: {reg_list="ra, s0-s2"; xreg_list="x1, x8-x9, x18";}
case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}
case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}

case 10: {reg_list="ra, s0-s5"; xreg_list="x1, x8-x9, x18-x21";}
case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
case 12: {reg_list="ra, s0-s7"; xreg_list="x1, x8-x9, x18-x23";}
case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 220

case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
//note - to include s10, sl11 must also be included
case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
default: reserved();
}
stack_adj

stack_adj_base + spimm[5:4] * 16;

RV32E:

stack_adj_base 16;
Valid values:

stack_adj

[16132]48]64];

RV32I:

switch (rlist) {
case 4.. 7: stack_adj_base = 16;

case 8..11: stack_adj_base = 32;
case 12..14: stack_adj_base = 48;
case 15: stack_adj_base = 64;

Valid values:

switch (rlist) {
case 4.. 7: stack_adj
case 8..11: stack_adj
case 12..14: stack_adj
case 15: stack_adj

[16]132]48] 64];
[32]48]64] 80];
[48|64]80] 961;
[64]80]961112];

RV64:

switch (rlist) {
case 4.. 5: stack_adj_base = 16;
case 6.. 7: stack_adj_base = 32;
case 8.. 9: stack_adj_base = 48;
case 10..11: stack_adj_base = 64;
case 12..13: stack_adj_base = 80;
case 14: stack_adj_base = 96;
case 15: stack_adj_base = 112;

Valid values:

switch (rlist) {
case 4.. 5: stack_adj
case 6.. 7: stack_adj

[16] 32| 48] 64];
[32] 48] 64| 80];

The RISC-V Instruction Set Manual Volume I | © RISC-V International

case
case
case
case
case

10.
12.

. 9: stack_adj
11
.13:
14:
15:

stack_adj
stack_adj
stack_adj
stack_adj

29.13. PUSH/POP register instructions | Page 221

[48] 64| 80| 96];
[64| 80| 96]112];
[80] 96]112]128];
[961112[128]|144];
[112]128]|144|160];

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 222

Description:

This instruction pops (loads) the registers in reg_list from stack memory, adjusts the stack pointer by
stack_adj and then returns to ra.

o All ABI register mappings are for the UABI. An EABI version is planned once the
EABI is frozen.
For further information see PUSH/POP Register Instructions.

Stack Adjustment Calculation:

stack_adj_base is the minimum number of bytes, in multiples of 16-byte address increments, required
to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base added
to spimm scaled by 16, as defined above.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists
Operation:

The first section of pseudocode may be executed multiple times before the instruction successfully
completes.

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.
if (XLEN==32) bytes=4; else bytes=8;

addr=sp+stack_adj-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
//if register i is in xreg_list
if (xreg_list[i]) {
switch(bytes) {
4: asm("lww x[i], 0(Caddr)");
8: asm("ld x[i], 0(Caddr)");
}
addr-=bytes;
}
}

The final section of pseudocode executes atomically, and only executes if the section above completes
without any exceptions or interrupts.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 223

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

sp+=stack_adj;
asm("ret");

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 224
29.13.11. cm.mvsa01

Synopsis:

Move a®-al into two registers of s@-s7
Mnemonic:

cm.mvsa®1ris’, r2s'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1 o 1 o 1 1 ris' o 1 r2s' 1 ®
FUNCT3 Cc2
o For the encoding to be legal r1s' = r2s'.

Assembly Syntax:

cm.mvsa0l rls', r2s'

Description: This instruction moves a® into ris' and a7 into r2s'". r1s' and r2s' must be different. The
execution is atomic, so it is not possible to observe state where only one of ris' or r2s' has been
updated.

The encoding uses sreg number specifiers instead of xreg number specifiers to save encoding space.
The mapping between them is specified in the pseudocode below.

e The s register mapping is taken from the UABI, and may not match the currently
unratified EABI. cm.mvsa®1.e may be included in the future.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists.

Operation:

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.
if (RV32E && (rlsc>1 || r2sc>1)) {
reserved();
}
xregl = {r1sc[2:1]1>0,r1sc[2:1]==0,r1sc[2:0]1};
xreg2 = {r2sc[2:1]1>0,r2sc[2:1]==0,r2sc[2:0]};
X[xregl] = X[10];
X[xreg2] = X[11];

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.13. PUSH/POP register instructions | Page 225
29.13.12. cm.mva@1s
Synopsis:
Move two s®-s7 registers into a®-at
Mnemonic:
cm.mva®is ris’, r2s'
Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1

1 o 1 o 1 1 ris' 1 1 r2s' 1 0
FUNCT3 C2

Assembly Syntax:

cm.mvaOls rls', r2s'

Description: This instruction moves r7s' into a® and r2s' into al. The execution is atomic, so it is not
possible to observe state where only one of a® or a7 have been updated.

The encoding uses sreg number specifiers instead of xreg number specifiers to save encoding space.
The mapping between them is specified in the pseudocode below.

o The s register mapping is taken from the UABI, and may not match the currently
unratified EABI. cm.mva®1s.e may be included in the future.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists.

Operation:

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.
if (RV32E && (r1sc>1 || r2sc>1)) {

reserved();
}
xregl = {rlsc[2:1]>0,rl1sc[2:1]==0,rl1sc[2:0]};
xreg2 = {r2sc[2:1]1>0,r2sc[2:1]==0,r2sc[2:0]};
X[10] = X[xregll];
X[11] = X[xreg2];

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.14. Table Jump Overview | Page 226

29.14. Table Jump Overview
cm,jt (Jump via table) and cmgjalt (Jump and link via table) are referred to as table jump.

Table jump uses a 256-entry XLEN wide table in instruction memory to contain function addresses.
The table must be a minimum of 64-byte aligned.

Table entries follow the current data endianness. This is different from normal instruction fetch which
is always little-endian.

cm.,jt and cm.jalt encodings index the table, giving access to functions within the full XLEN wide
address space.

This is used as a form of dictionary compression to reduce the code size of jal / auipc+jalr / jr /
auipc+jr instructions.

Table jump allows the linker to replace the following instruction sequences with a cm.jt or cm.jalt
encoding, and an entry in the table:

® 32-bit calls

® 32-bit jal ra calls

® (G4-bit auipc+jr calls to fixed locations

® 64-bit auipc+jalr ra calls to fixed locations

® The auipc+jr/jalr sequence is used because the offset from the PC is out of the £1MB range.

If a return address stack is implemented, then as cm.jalt is equivalent to jal ra, it pushes to the stack.

29.14.1. jvt

The base of the table is in the jvt CSR (see jvt CSR, table jump base vector and control register), each
table entry is XLEN bits.

If the same function is called with and without linking then it must have two entries in the table. This is
typically caused by the same function being called with and without tail calling.

29.14.2. Table Jump Fault handling

For a table jump instruction, the table entry that the instruction selects is considered an extension of
the instruction itself. Hence, the execution of a table jump instruction involves two instruction fetches,
the first to read the instruction (cm.jt/cm.jalt) and the second to read from the jump vector table (JVT).
Both instruction fetches are implicit reads, and both require execute permission; read permission is
irrelevant. It is recommended that the second fetch be ignored for hardware triggers and breakpoints.

Memory writes to the jump vector table require an instruction barrier (fence.i) to guarantee that they
are visible to the instruction fetch.

Multiple contexts may have different jump vector tables. JVT may be switched between them without
an instruction barrier if the tables have not been updated in memory since the last fence.i.

If an exception occurs on either instruction fetch, xEPC is set to the PC of the table jump instruction,
XCAUSE is set as expected for the type of fault and xTVAL (if not set to zero) contains the fetch

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.14. Table Jump Overview | Page 227

address which caused the fault.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.14. Table Jump Overview | Page 228

29.14.3. jvt CSR

Synopsis:

Table jump base vector and control register

Address:

Ox0017

Permissions:

URW

Format (RV32):

. &5 8

base[XLEN-1:6] (WARL) mode
XLEN-6 6

Format (RV64):

63 65]
base[XLEN-1:6] (WARL) mode
XLEN-6 6

Description:

The jvt register is an XLEN-bit WARL read/write register that holds the jump table configuration,
consisting of the jump table base address (BASE) and the jump table mode (MODE).

If Section 29.10 is implemented then jvt must also be implemented, but can contain a read-only value.
If jvt is writable, the set of values the register may hold can vary by implementation. The value in the
BASE field must always be aligned on a 64-byte boundary.

jvt.base is a virtual address, whenever virtual memory is enabled.

The memory pointed to by jvt.base is treated as instruction memory for the purpose of executing table
jump instructions, implying execute access permission.

Table 43. jvt. mode definition

jvt.mode Comment

000000 Jump table mode

others reserved for future standard
use

Jjvt.mode is a WARL field, so can only be programmed to modes which are implemented. Therefore the
discovery mechanism is to attempt to program different modes and read back the values to see which
are available. Jump table mode must be implemented.

o in future the RISC-V Unified Discovery method will report the available modes.

Architectural State:

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.14. Table Jump Overview | Page 229

jvt CSR adds architectural state to the system software context (such as an OS process), therefore
must be saved/restored on context switches.

State Enable:

If the Smstateen extension is implemented, then bit 2 in mstateen®, sstateen®, and hstateen® is
implemented. If bit 2 of a controlling stateen® CSR is zero, then access to the jvt CSR and execution
of a cm,jalt or cm.jt instruction by a lower privilege level results in an Illegal Instruction trap (or, if
appropriate, a Virtual Instruction trap).

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.14. Table Jump Overview | Page 230
29.14.4. cm.jt

Synopsis:

jump via table

Mnemonic:

cm.jt index

Encoding (RV32, RV64):

15 13 12 10 9 2 1
1] 1]] o index 1 o
FUNCT3 c2
o For this encoding to decode as cm.jt, index<32, otherwise it decodes as cm.jalt, see

Jump and link via table.

If jvtmode = O (Jump Table Mode) then cm.jt behaves as specified here. If jyt. mode
o is a reserved value, then cm.jt is also reserved. In the future other defined values of
Jjvt.mode may change the behaviour of cm.jt.

Assembly Syntax:

cm.jt index

Description:

cm.jt reads an entry from the jump vector table in memory and jumps to the address that was read.
For further information see Table Jump Overview.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.14. Table Jump Overview | Page 231

Operation:

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

target_address is temporary internal state, it doesn't represent a real
register
InstMemory is byte indexed

switch(XLEN) {
32: table_address[XLEN-1:0]
64: table_address[XLEN-1:0]

jvt.base + (index<<2);
jvt.base + (index<<3);

//fetch from the jump table
target_address[XLEN-1:08] = InstMemory[table_address][XLEN-1:0];

j target_address[XLEN-1:0]&~0x1;

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.14. Table Jump Overview | Page 232
29.14.5. cm.jalt

Synopsis:

jump via table with optional link
Mnemonic:

cm.jalt index

Encoding (RV32, RV64):

15 13 12 10 9 2 1
1] 1]] o index 1 o
FUNCT3 c2
o For this encoding to decode as cm.jalt, index>=32, otherwise it decodes as cm.jt, see
Jump via table.

If jvtmode = O (Jump Table Mode) then cm.jalt behaves as specified here. If
o jvt.mode is a reserved value, then cm.jalt is also reserved. In the future other defined
values of jvt. mode may change the behaviour of cm.jalt.

Assembly Syntax:

cm.jalt index

Description:

cm.jalt reads an entry from the jump vector table in memory and jumps to the address that was read,
linking to ra.

For further information see Table Jump Overview.
Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

29.14. Table Jump Overview | Page 233

Operation:

//This is not SAIL, it's pseudocode. The SAIL hasn't been written yet.

target_address is temporary internal state, it doesn't represent a real
register
InstMemory is byte indexed

switch(XLEN) {
32: table_address[XLEN-1:0]
64: table_address[XLEN-1:0]

jvt.base + (index<<2);
jvt.base + (index<<3);

//fetch from the jump table
target_address[XLEN-1:08] = InstMemory[table_address][XLEN-1:0];

jal ra, target_address[XLEN-1:0]&~0x1;

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.1. Zb* Overview | Page 234

Chapter 30. "B" Extension for Bit Manipulation, Version 1.0.0

The B standard extension comprises instructions provided by the Zba, Zbb, and Zbs extensions.

30.1. Zb* Overview

The bit-manipulation (bitmanip) extension collection is comprised of several component extensions to
the base RISC-V architecture that are intended to provide some combination of code size reduction,
performance improvement, and energy reduction. While the instructions are intended to have general
use, some instructions are more useful in some domains than others. Hence, several smaller bitmanip
extensions are provided. Each of these smaller extensions is grouped by common function and use
case, and each has its own Zb*-extension name.

Each bitmanip extension includes a group of several bitmanip instructions that have similar purposes
and that can often share the same logic. Some instructions are available in only one extension while
others are available in several. The instructions have mnemonics and encodings that are independent
of the extensions in which they appear. Thus, when implementing extensions with overlapping
instructions, there is no redundancy in logic or encoding.

The bitmanip extensions are defined for RV32 and RV64. Most of the instructions are expected to be
forward compatible with RV128. While the shift-immediate instructions are defined to have at most a
6-bit immediate field, a 7th bit is available in the encoding space should this be needed for RV128.

30.2. Word Instructions

The bitmanip extension follows the convention in RV64 that w-suffixed instructions (without a dot
before the w) ignore the upper 32 bits of their inputs, operate on the least-significant 32-bits as
signed values and produce a 32-bit signed result that is sign-extended to XLEN.

Bitmanip instructions with the suffix .uw have one operand that is an unsigned 32-bit value that is
extracted from the least significant 32 bits of the specified register. Other than that, these perform full
XLEN operations.

Bitmanip instructions with the suffix .b, .h and .w only look at the least significant 8-bits, 16-bits and
32-bits of the input (respectively) and produce an XLEN-wide result that is sign-extended or zero-
extended, based on the specific instruction.

30.3. Pseudocode for instruction semantics

The semantics of each instruction in Instructions (in alphabetical order) is expressed in a SAIL-like
syntax.

30.4. Extensions

The first group of bitmanip extensions to be released for Public Review are:

® Address generation instructions
® Basic bit-manipulation

® Carry-less multiplication

The RISC-V Instruction Set Manual Volume I | © RISC-V International

® Single-bit instructions

30.4. Extensions | Page 235

Below is a list of all of the instructions that are included in these extensions along with their specific

mapping:
RV32 RV64
v
v
v
v
v
v

<< << < < X

<

<< << < < < X

D S U NN

Mnemonic
add.uw rd, rs1, rs2
andn rd, rs1, rs2
clmul rd, rs1, rs2
clmulth rd, rs1, rs2
clmulr rd, rs1, rs2
clzrd, rs

clzw rd, rs

cpop rd, rs
cpopw rd, rs
ctzrd, rs

ctzw rd, rs

max rd, rsi, rs2
maxu rd, rsi, rs2
min rd, rs1, rs2
minu rd, rs1, rs2
orc.brd, rs

orn rd, rsi, rs2
rev8 rd, rs

rol rd, rsi, rs2
rolw rd, rsi, rs2
ror rd, rs1, rs2
rori rd, rs1, shamt
roriw rd, rs1, shamt
rorw rd, rsi, rs2
bclr rd, rs1, rs2
bclri rd, rs1, imm
bext rd, rsi1, rs2
bexti rd, rs1, imm
binv rd, rs1, rs2
binvi rd, rs1, imm
bset rd, rs1, rs2

bseti rd, rs1, imm

Instruction

Add unsigned word

AND with inverted operand
Carry-less multiply (low-part)
Carry-less multiply (high-part)
Carry-less multiply (reversed)
Count leading zero bits

Count leading zero bits in word
Count set bits

Count set bits in word

Count trailing zero bits

Count trailing zero bits in word
Maximum

Unsigned maximum

Minimum

Unsigned minimum

Bitwise OR-Combine, byte granule
OR with inverted operand
Byte-reverse register

Rotate left (Register)

Rotate Left Word (Register)
Rotate right (Register)

Rotate right (Immediate)
Rotate right Word (Immediate)
Rotate right Word (Register)
Single-Bit Clear (Register)
Single-Bit Clear (Immediate)
Single-Bit Extract (Register)
Single-Bit Extract (Immediate)
Single-Bit Invert (Register)
Single-Bit Invert (Immediate)
Single-Bit Set (Register)

Single-Bit Set (Immediate)

Zba Zbb Zbc Zbs

v

<< < 1 K < < X X X <X <X <X < < X< X <

<< << < < < X

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.4. Extensions | Page 236

RV32 RV64 Mnemonic Instruction Zba Zbb Zbc Zbs
V4 V4 sext.b rd, rs Sign-extend byte v
v v4 sext.h rd, rs Sign-extend halfword v
v4 4 shladd rd, rs1, rs2 Shift left by 1 and add V4

v shladd.uw rd, rs1, rs2 Shift unsigned word left by 1 and add v
v4 4 sh2add rd, rs1, rs2 Shift left by 2 and add v
v sh2add.uw rd, rs1, rs2 Shift unsigned word left by 2 and add v
v4 4 sh3add rd, rs1, rs2 Shift left by 3 and add V4
V4 sh3add.uw rd, rs1, rs2 Shift unsigned word left by 3 and add V4
v slli.uw rd, rs1, imm Shift-left unsigned word (Immediate) v
V4 V4 xnor rd, rs1, rs2 Exclusive NOR v
Vv v4 zext.hrd, rs Zero-extend halfword V4

30.4.1. Zba: Address generation

The Zba instructions can be used to accelerate the generation of addresses that index into arrays of
basic types (halfword, word, doubleword) using both unsigned word-sized and XLEN-sized indices: a
shifted index is added to a base address.

The shift and add instructions do a left shift of 1, 2, or 3 because these are commonly found in real-
world code and because they can be implemented with a minimal amount of additional hardware
beyond that of the simple adder. This avoids lengthening the critical path in implementations.

While the shift and add instructions are limited to a maximum left shift of 3, the slli instruction (from
the base ISA) can be used to perform similar shifts for indexing into arrays of wider elements. The
slli.uw — added in this extension —can be used when the index is to be interpreted as an unsigned

word.

The following instructions comprise the Zba extension:

RV32 RV64 Mnemonic

v4 add.uw rd, rs1, rs2
shladd rd, rs1, rs2
shladd.uw rd, rs1, rs2
sh2add rd, rs1, rs2
sh2add.uw rd, rs1, rs2
sh3add rd, rs1, rs2

sh3add.uw rd, rs1, rs2

<< < < < < X

slli.uw rd, rs7, imm

Instruction

Add unsigned word

Shift left by 1 and add

Shift unsigned word left by 1 and add
Shift left by 2 and add

Shift unsigned word left by 2 and add
Shift left by 3 and add

Shift unsigned word left by 3 and add

Shift-left unsigned word (Immediate)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.4. Extensions | Page 237

30.4.2. Zbb: Basic bit-manipulation

30.4.2.1. Logical with negate

RV32 RV64 Mnemonic Instruction
4 v andn rd, rs1, rs2 AND with inverted operand
V4 V4 orn rd, rsi, rs2 OR with inverted operand
V4 v xnor rd, rs1, rs2 Exclusive NOR

Implementation Hint

0 The Logical with Negate instructions can be implemented by inverting the rs2 inputs
to the base-required AND, OR, and XOR logic instructions. In some implementations,
the inverter on rs2 used for subtraction can be reused for this purpose.

30.4.2.2. Count leading/trailing zero bits

RV32 RV64 Mnemonic Instruction
V4 V4 clzrd, rs Count leading zero bits
V4 clzw rd, rs Count leading zero bits in word
V4 V4 ctzrd, rs Count trailing zero bits
v ctzwrd, rs Count trailing zero bits in word

30.4.2.3. Count population

These instructions count the number of set bits (1-bits). This is also commonly referred to as
population count.

RV32 RV64 Mnemonic Instruction
4 v cpoprd,rs Count set bits
v cpopw rd, rs Count set bits in word

30.4.2.4. Integer minimum/maximum

The integer minimum/maximum instructions are arithmetic R-type instructions that return the
smaller/larger of two operands.

RV32 RV64 Mnemonic Instruction
V4 v max rd, rsi, rs2 Maximum
V4 v4 maxu rd, rsi, rs2 Unsigned maximum
V4 v min rd, rs1, rs2 Minimum
4 v minu rd, rs1, rs2 Unsigned minimum

30.4.2.5. Sign extension and zero extension

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.4. Extensions | Page 238

These instructions perform the sign extension or zero extension of the least significant 8 bits or 16
bits of the source register.

These instructions replace the generalized idioms s11i rD,rS, (XLEN-<size>) + srli (for zero extension)
or slli + srai (for sign extension) for the sign extension of 8-bit and 16-bit quantities, and for the zero
extension of 16-bit quantities.

RV32 RV64 Mnemonic Instruction
V4 v sext.b rd, rs Sign-extend byte
v v sexthrd,rs Sign-extend halfword
Vv v4 zext.h rd, rs Zero-extend halfword

30.4.2.6. Bitwise rotation

Bitwise rotation instructions are similar to the shift-logical operations from the base spec. However,
where the shift-logical instructions shift in zeros, the rotate instructions shift in the bits that were
shifted out of the other side of the value. Such operations are also referred to as ‘circular shifts’.

RV32 RV64 Mnemonic Instruction
V4 v rol rd, rsi, rs2 Rotate left (Register)
v rolw rd, rs1, rs2 Rotate Left Word (Register)
V4 V4 ror rd, rs1, rs2 Rotate right (Register)
V4 V4 rori rd, rs1, shamt Rotate right (Immediate)
v roriw rd, rs1, shamt Rotate right Word (Immediate)
V4 rorw rd, rsi, rs2 Rotate right Word (Register)

Architecture Explanation

0 The rotate instructions were included to replace a common four-instruction sequence
to achieve the same effect (neg; sll/srl; srl/sll; or)

30.4.2.7. OR Combine

orc.b sets the bits of each byte in the result rd to all zeros if no bit within the respective byte of rs is
set, or to all ones if any bit within the respective byte of rs is set.

One use-case is string-processing functions, such as strlen and strcpy, which can use orc.b to test for
the terminating zero byte by counting the set bits in leading non-zero bytes in a word.

RV32 RV64 Mnemonic Instruction

V4 V4 orc.b rd, rs Bitwise OR-Combine, byte granule

30.4.2.8. Byte-reverse

rev8 reverses the byte-ordering of rs.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.4. Extensions | Page 239

RV32 RV64 Mnemonic Instruction

V4 v4 rev8 ra, rs Byte-reverse register

30.4.3. Zbc: Carry-less multiplication
Carry-less multiplication is the multiplication in the polynomial ring over GF(2).

clmul produces the lower half of the carry-less product and clmulh produces the upper half of the 2
X XLEN carry-less product.

clmulr produces bits 2 X XLEN-2:XLEN-1 of the 2 X XLEN carry-less product.

RV32 RV64 Mnemonic Instruction
V4 4 clmul rd, rs1, rs2 Carry-less multiply (low-part)
V4 v clmulh rd, rs1, rs2 Carry-less multiply (high-part)
4 v clmulr rd, rst, rs2 Carry-less multiply (reversed)

30.4.4. Zbs: Single-bit instructions

The single-bit instructions provide a mechanism to set, clear, invert, or extract a single bit in a register.
The bit is specified by its index.

RV32 RV64 Mnemonic Instruction
V4 V4 bclr rd, rsi, rs2 Single-Bit Clear (Register)
V4 v bclri rd, rs1, imm Single-Bit Clear (Immediate)
4 v bext rd, rs1, rs2 Single-Bit Extract (Register)
4 v bexti rd, rs1, imm Single-Bit Extract (Immediate)
V4 v binv rd, rs1, rs2 Single-Bit Invert (Register)
4 v binvi rd, rs1, imm Single-Bit Invert (Immediate)
V4 V4 bset rd, rs1, rs2 Single-Bit Set (Register)
Vv v bseti rd, rs1, imm Single-Bit Set (Immediate)

30.4.5. Zbkb: Bit-manipulation for Cryptography

This extension contains instructions essential for implementing common operations in cryptographic
workloads.

RV32 RV64 Mnemonic Instruction
V4 v rol Rotate left (Register)
v rolw Rotate Left Word (Register)
V4 v ror Rotate right (Register)
V4 v rori Rotate right (Immediate)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.4. Extensions | Page 240

RV32 RV64 Mnemonic Instruction

v roriw Rotate right Word (Immediate)
v rorw Rotate right Word (Register)

4 v andn AND with inverted operand

V4 v orn OR with inverted operand

v4 v Xnor Exclusive NOR

v v pack Pack low halves of registers

4 v packh Pack low bytes of registers
v packw Pack low 16-bits of registers (RV64)

V4 V4 brev8 Reverse bits in bytes

v4 v rev8 Byte-reverse register

v4 zip Bit interleave

v unzip Bit deinterleave

30.4.6. Zbkc: Carry-less multiplication for Cryptography

Carry-less multiplication is the multiplication in the polynomial ring over GF(2). This is a critical
operation in some cryptographic workloads, particularly the AES-GCM authenticated encryption
scheme. This extension provides only the instructions needed to efficiently implement the GHASH
operation, which is part of this workload.

RV32 RV64 Mnemonic Instruction
V4 v4 clmul rd, rs1, rs2 Carry-less multiply (low-part)
V4 v clmulh rd, rs1, rs2 Carry-less multiply (high-part)

30.4.7. Zbkx: Crossbar permutations

These instructions implement a "lookup table" for 4 and 8 bit elements inside the general purpose
registers. rs1is used as a vector of N-bit words, and rs2 as a vector of N-bit indices into rs7. Elements
in rs1 are replaced by the indexed element in rs2, or zero if the index into rs2 is out of bounds.

These instructions are useful for expressing N-bit to N-bit boolean operations, and implementing
cryptographic code with secret dependent memory accesses (particularly SBoxes) such that the
execution latency does not depend on the (secret) data being operated on.

RV32 RV64 Mnemonic Instruction
4 v xperm4 rd, rsi, rs2 Crossbar permutation (nibbles)
V4 v xperm8 rd, rsi, rs2 Crossbar permutation (bytes)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 241

30.5. Instructions (in alphabetical order)

30.5.1. add.uw

Synopsis
Add unsigned word

Mnemonic

add.uw rd, rs1, rs2

Pseudoinstructions

zext.w rd, rs1 = add.uw rd, rs1, zero

Encoding

31 25 24 20 19 15 14 12 1 7 6)

® 8 8 8 1 0 © rs2 rs1 ® 0 © rd ® 1 1 1 60 1 1
ADD.UW ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition between rs2 and the zero-extended least-
significant word of rs7.

Operation

let base = X(rs2);
let index = EXTZ(X(rs1)[31..0]1);

X(rd) = base + index;

Included in

Extension Minimum version Lifecycle state

Zba (Address generation instructions) 0.93 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 242
30.5.2. andn

Synopsis
AND with inverted operand

Mnemonic

andn rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7)

® 1 8 8 8 8 © rs2 rst 11 1 rd ® 1.1 8 8 1 1
ANDN ANDN oP

Description

This instruction performs the bitwise logical AND operation between rs7 and the bitwise inversion
of rs2.

Operation

X(rd) = X(rs1) & ~X(rs2);

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) v1.0 Ratified
Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 243

30.5.3. bclr

Synopsis
Single-Bit Clear (Register)

Mnemonic

bclr rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

o 1.0 0 1 0 0 rs2 rsi 0 0 1 rd e 1.1 06 0 1 1
BCLR/BEXT BCLR oP

Description

This instruction returns rs7 with a single bit cleared at the index specified in rs2. The index is read
from the lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = X(rsl) & ~(1 << index)

Included in

Extension Minimum version Lifecycle state

Zbs (Single-bit instructions) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 244

30.5.4. bclri

Synopsis
Single-Bit Clear (Immediate)

Mnemonic

bclri rd, rs1, shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 11 7 6)
® 1 8 8 1 8 © shamt rs1 e 0 1 rd ® 0 1 08 0 1 1
BCLRI BCLRI OP-IMM

Encoding (RV64)

31 26 25 20 19 15 14 12 1M 7 6)
8 1 8 8 1 8 shamt rst 0 0 1 rd ® 8 1 8 0 1 1
BCLRI BCLRI OP-IMM

Description

This instruction returns rs7 with a single bit cleared at the index specified in shamt. The index is
read from the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to

shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = X(rs1) & ~(1 << index)

Included in

Extension

Zbs (Single-bit instructions)

Minimum version Lifecycle state

v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 245
30.5.5. bext

Synopsis
Single-Bit Extract (Register)

Mnemonic

bext rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 1 8 8 1 8 © rs2 rst 10 1 rd ® 1.1 8 8 1 1
BCLR/BEXT BEXT oP

Description

This instruction returns a single bit extracted from rs7 at the index specified in rs2. The index is
read from the lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = (X(rs1) >> index) & 1;

Included in

Extension Minimum version Lifecycle state

Zbs (Single-bit instructions) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 246

30.5.6. bexti

Synopsis
Single-Bit Extract (Immediate)

Mnemonic

bexti rd, rs1, shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 11

® 1 8 8 1 8 © shamt rs1 10 1 rd ® 6 1 0 0 1
BEXTI/BCLRI BEXTI OP-IMM

Encoding (RV64)

31 26 25 20 19 15 14 12 1M 6

8 1 8 8 1 8 shamt rst 1 0 1 rd ® 8 1 8 0 1
BEXTI/BCLRI BEXTI OP-IMM

Description

This instruction returns a single bit extracted from rs7 at the index specified in shamt. The index is
read from the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to

shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = (X(rs1) >> index) & 1;
Included in

Extension

Zbs (Single-bit instructions)

Minimum version

v1.0

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Lifecycle state

Ratified

30.5. Instructions (in alphabetical order) | Page 247

30.5.7. binv

Synopsis
Single-Bit Invert (Register)

Mnemonic

binv rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 11 8 1 8 © rs2 rst 0 0 1 rd ® 1.1 8 8 1 1
BINV BINV oP

Description

This instruction returns rs7 with a single bit inverted at the index specified in rs2. The index is read
from the lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = X(rs1) ~ (1 << index)

Included in

Extension Minimum version Lifecycle state

Zbs (Single-bit instructions) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 248
30.5.8. binvi

Synopsis
Single-Bit Invert (Immediate)

Mnemonic

binvi rd, rs1, shamt
Encoding (RV32)
31 25 24 20 19 15 14 12 11 7 6 o

o 1.1 0 1 08 0 shamt rsi 0O 0 1 rd O 1. 0 0 1 1
BINVI BINV OP-IMM

=)

Encoding (RV64)

31 26 25 20 19 15 14 12 11 7 6)
® 11 8 1 0© shamt rs1 o 0 1 rd ® 0 1 08 0 1 1
BINVI BINV OP-IMM

Description

This instruction returns rs7 with a single bit inverted at the index specified in shamt. The index is
read from the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to
shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = X(rs1) A (1 << index)

Included in

Extension Minimum version Lifecycle state

Zbs (Single-bit instructions) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 249

30.5.9. bset

Synopsis
Single-Bit Set (Register)

Mnemonic

bset rd, rs1,rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

o 0 1. 0 1 0 0 rs2 rsi 0 0 1 rd e 1.1 06 0 1 1
BSET BSET oP

Description

This instruction returns rs7 with a single bit set at the index specified in rs2. The index is read from
the lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = X(rs1) | (1 << index)

Included in

Extension Minimum version Lifecycle state

Zbs (Single-bit instructions) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 250

30.5.10. bseti

Synopsis
Single-Bit Set (Immediate)

Mnemonic

bseti rd, rs1,shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 1M 7 6)
o 0 1. 0 1 0 O shamt rs1 O 0 1 rd e 0 1. 0 0 1 1
BSETI BSETI OP-IMM

Encoding (RV64)

31 26 25 20 19 15 14 12 1M 7 6)
® 0 1 8 1 ® shamt rsi ® 0 1 rd ® 8 1 8 0 1 1
BSETI BSETI OP-IMM

Description

This instruction returns rs7 with a single bit set at the index specified in shamt. The index is read
from the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to shamt[5]=1 are

reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = X(rs1) | (1 << index)
Included in

Extension

Zbs (Single-bit instructions)

Minimum version Lifecycle state

v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 251
30.5.11. cimul

Synopsis
Carry-less multiply (low-part)

Mnemonic

clmul rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 0
O 0 0 0 1 0 1 rs2 rsi 0 0 1 rd e 1.1 06 0 1 1
MINMAX/CLMUL CLMUL oP
Description

clmul produces the lower half of the 2-XLEN carry-less product.

Operation
let rsl_val = X(rsl);
let rs2_val = X(rs2);

let output : xlenbits = 0;
foreach (i from 08 to (xlen - 1) by 1) {
output = if ((rs2_val >> i) & 1)

then output * (rsl_val << i);
else output;

X[rd] = output

Included in

Extension Minimum version Lifecycle state
Zbc (Carry-less multiplication) v1.0 Ratified
Zbkc (Carry-less multiplication for Cryptography) vi1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 252
30.5.12. cimulh

Synopsis
Carry-less multiply (high-part)

Mnemonic

clmulh rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7

O 0 0 0 1 0 1 rs2 rsi o 1 1 rd O 1.1 0 O
MINMAX/CLMUL CLMULH oP

Description

clmulh produces the upper half of the 2-XLEN carry-less product.

Operation

let rsl_val = X(rsl);
let rs2_val = X(rs2);
let output : xlenbits = 0;

foreach (i from 1 to xlen by 1) {
output = if ((rs2_val >> i) & 1)

then output A (rsi_val >> (xlen - i));
else output;

X[rd] = output

Included in

Extension Minimum version
Zbc (Carry-less multiplication) v1.0
Zbkc (Carry-less multiplication for Cryptography) v1.0

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Lifecycle state
Ratified

Ratified

30.5. Instructions (in alphabetical order) | Page 253
30.5.13. clmulr

Synopsis
Carry-less multiply (reversed)

Mnemonic

clmulr rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

O 0 0 0 1 0 1 rs2 rsi o 1 0 rd e 1.1 06 0 1 1
MINMAX/CLMUL CLMULR oP

Description

clmulr produces bits 2-XLEN-2:XLEN-1 of the 2-XLEN carry-less product.

Operation
let rsl_val = X(rsl);
let rs2_val = X(rs2);

let output : xlenbits = 0;

foreach (i from 08 to (xlen - 1) by 1) {
output = if ((rs2_val >> i) & 1)
then output ~ (rsl_val >> (xlen - i - 1));
else output;

X[rd] = output

Note
o The clmulr instruction is used to accelerate CRC calculations. The r in the
instruction’s mnemonic stands for reversed, as the instruction is equivalent to bit-

reversing the inputs, performing a clmul, then bit-reversing the output.

Included in

Extension Minimum version Lifecycle state

Zbc (Carry-less multiplication) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 254

30.5.14. clz

Synopsis
Count leading zero bits

Mnemonic
clzrd, rs
Encoding
31 25 24 20 19 15 14 12 1 7 6)
® 11 8 0 8 8|06 8 8 8 O rs1 0 0 1 rd ® 8 1 8 0 1 1
cLzZ cLz cLz OP-IMM
Description

This instruction counts the number of Qs before the first 1, starting at the most-significant bit (i.e,,
XLEN-1) and progressing to bit . Accordingly, if the input is ©, the output is XLEN, and if the most-

significant bit of the input is a 1, the output is ®.

Operation

val HighestSetBit : forall ('N : Int), 'N >= 0. bits('N) -> int

function HighestSetBit x = {
foreach (i from (xlen - 1) to 0 by 1 in dec)
if [x[i]] == OGbl then return(i) else ();
return -1;

}.

let rs = X(rs);
X[rd] = (xlen - 1) - HighestSetBit(rs);

Included in

Extension Minimum version

Zbb (Basic bit-manipulation) v1.0

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Lifecycle state

Ratified

30.5. Instructions (in alphabetical order) | Page 255

30.5.15. clzw

Synopsis
Count leading zero bits in word

Mnemonic
clzw rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 o
® 11 8 68 06 0|6 6 08 O © rsi o 0 1 rd ® 8 1 1 0 1 1
CLZW CLZW CLZW OP-IMM-32
Description

This instruction counts the number of O’s before the first 1 starting at bit 31 and progressing to bit
0. Accordingly, if the least-significant word is O, the output is 32, and if the most-significant bit of
the word (i.e., bit 31) is a 1, the output is ©.

Operation

val HighestSetBit32 : forall ('N : Int), 'N >= 0. bits('N) -> int

function HighestSetBit32 x = {
foreach (i from 31 to 0 by 1 in dec)
if [x[i]] == OGbl then return(i) else ();
return -1;

}.

let rs = X(rs);
X[rd] = 31 - HighestSetBit(rs);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 256

30.5.16. cpop

Synopsis
Count set bits

Mnemonic
cpop rd, rs
Encoding
31 25 24 20 19 15 14 12 1M 7 6)
® 1 1 8 0 0 8|6 08 6 1 O rs1 0 8 1 rd ® 8 1 8 0 1 1
CPOP CPOP CPOP OP-IMM
Description

This instructions counts the number of 1's (i.e,, set bits) in the source register.

Operation

let bitcount = 0;
let rs = X(rs);

foreach (i from 0 to (xlen - 1) in inc)
if rs[i] == Obl then bitcount = bitcount + 1 else ();

X[rd] = bitcount

Software Hint

This operations is known as population count, popcount, sideways sum, bit

e summation, or Hamming weight.

The GCC builtin function __builtin_popcount (unsigned int x) is implemented by cpop
on RV32 and by cpopw on RV64. The GCC builtin function __builtin_popcountl

(unsigned long x) for LP64 is implemented by cpop on RV64.
Included in

Extension Minimum version

Zbb (Basic bit-manipulation) v1.0

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Lifecycle state

Ratified

30.5. Instructions (in alphabetical order) | Page 257
30.5.17. cpopw

Synopsis
Count set bits in word

Mnemonic

cpopw rd, rs

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 11 8 8 08 0|60 06 6 1 O rs 0 0 1 rd ® 0 1 1 8 1 1
CPOPW CPOPW CPOPW OP-IMM-32

Description

This instructions counts the number of 1's (i.e., set bits) in the least-significant word of the source
register.

Operation

let bitcount = 0;
let val = X(rs);

foreach (i from 0 to 31 in inc)
if val[i] == Obl then bitcount = bitcount + 1 else ();

X[rd] = bitcount

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 258

30.5.18. ctz

Synopsis
Count trailing zeros

Mnemonic
ctzrd, rs
Encoding
31 25 24 20 19 15 14 12 1 7 6)
® 11 8 0 08 8|0 08 08 O 1 rs1 0 0 1 rd ® 8 1 8 0 1 1
CTZ/CTZW CTZ/CTZW CTZ/CTZW OP-IMM
Description

This instruction counts the number of ’s before the first 1, starting at the least-significant bit (i.e,,
0) and progressing to the most-significant bit (i.e., XLEN-1). Accordingly, if the input is ®, the output

is XLEN, and if the least-significant bit of the input is a 1, the output is ©.

Operation

val LowestSetBit : forall ('N : Int), 'N >= 0. bits('N) -> int

function LowestSetBit x = {
foreach (i from 0 to (xlen - 1) by 1 in dec)
if [x[i]] == OGbl then return(i) else ();
return xlen;

}.

let rs = X(rs);
X[rd] = LowestSetBit(rs);

Included in

Extension Minimum version

Zbb (Basic bit-manipulation) v1.0

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Lifecycle state

Ratified

30.5. Instructions (in alphabetical order) | Page 259
30.5.19. ctzw

Synopsis

Count trailing zero bits in word

Mnemonic
ctzw rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 o
® 11 8 6 06 0|0 ® 0 O 1 rsi o 0 1 rd ® 8 1 1 0 1 1
CTZ/CTZW CTZ/CTZW CTZ/CTZW OP-IMM-32
Description

This instruction counts the number of ’s before the first 1, starting at the least-significant bit (i.e,,
0) and progressing to the most-significant bit of the least-significant word (i.e., 31). Accordingly, if
the least-significant word is ®, the output is 32, and if the least-significant bit of the input is a 1, the
output is O.

Operation

val LowestSetBit32 : forall ('N : Int), 'N >= 0. bits('N) -> int

function LowestSetBit32 x = {
foreach (i from 0 to 31 by 1 in dec)
if [x[1i]] == Bbl1l then return(i) else ();
return 32;

}.

let rs = X(rs);
X[rd] = LowestSetBit32(rs);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 260

30.5.20. max

Synopsis

Maximum

Mnemonic

max rd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 6 8 8 1 © 1 rs2 rst 11 0 rd ® 1.1 8 8 1 1
MINMAX/CLMUL MAX oP

Description

This instruction returns the larger of two signed integers.

Operation

let rsl_val = X(rsl);
let rs2_val = X(rs2);

let result = if rsl_val <_s rs2_val
then rs2_val
else rsl_val;

X(rd) = result;

Software Hint

Calculating the absolute value of a signed integer can be performed using the

o following sequence: neg rD,rS followed by max rD,rS,rD. When using this common
sequence, it is suggested that they are scheduled with no intervening instructions so
that implementations that are so optimized can fuse them together.

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 261
30.5.21. maxu

Synopsis

Unsigned maximum

Mnemonic

maxu rd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 11 7)

® 6 8 8 1 © 1 rs2 rst 11 1 rd ® 1.1 8 8 1 1
MINMAX/CLMUL MAXU oP

Description

This instruction returns the larger of two unsigned integers.

Operation

let rsl_val = X(rsl);
let rs2_val = X(rs2);

let result = if rsl_val <_u rs2_val
then rs2_val

else rsl_val;

X(rd) = result;

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 262

30.5.22. min

Synopsis

Minimum

Mnemonic

min rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7

® 6 8 8 1 © 1 rs2 rst 10 © rd ® 11 8 ©
MINMAX/CLMUL MIN oP

Description

This instruction returns the smaller of two signed integers.

Operation

let rsl_val = X(rsl);
let rs2_val = X(rs2);

let result = if rsl_val <_s rs2_val
then rsl_val

else rs2_val;

X(rd) = result;

Included in

Extension Minimum version

Zbb (Basic bit-manipulation) v1.0

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Lifecycle state

Ratified

30.5. Instructions (in alphabetical order) | Page 263

30.5.23. minu

Synopsis

Unsigned minimum

Mnemonic

minu rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7)

® 6 8 8 1 © 1 rs2 rst 10 1 rd ® 1.1 8 8 1 1
MINMAX/CLMUL MINU oP

Description

This instruction returns the smaller of two unsigned integers.

Operation

let rsl_val = X(rsl);
let rs2_val = X(rs2);

let result = if rsl_val <_u rs2_val
then rsl_val

else rs2_val;

X(rd) = result;

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 264
30.5.24. orc.b

Synopsis
Bitwise OR-Combine, byte granule

Mnemonic
orc.brd, rs
Encoding
31 20 19 15 14 12 1 7 6)
® 0 1 8 1 8 8 8 0 1 1 1 rs 1 0 1 rd ® 8 1 8 0 1 1
OP-IMM
Description

Combines the bits within each byte using bitwise logical OR. This sets the bits of each byte in the
result rd to all zeros if no bit within the respective byte of rs is set, or to all ones if any bit within the
respective byte of rs is set.

Operation

let input = X(rs);
let output : xlenbits = 0;

foreach (i from 0 to (xlen - 8) by 8) {
output[(i + 7)..1i] = if input[(i + 7)..1i] == 0

then 0b0OOBOOOO
else 0b11111111;

X[rd] = output;

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 265

30.5.25. orn

Synopsis
OR with inverted operand

Mnemonic

ornrd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 11 7)

® 1 8 8 8 8 © rs2 rst 11 0 rd ® 1.1 8 8 1 1
ORN ORN oP

Description

This instruction performs the bitwise logical OR operation between rs7 and the bitwise inversion of
rs2.

Operation

X(rd) = X(rs1) | ~X(rs2);

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) v1.0 Ratified
Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 266

30.5.26. pack

Synopsis
Pack the low halves of rs7 and rs2 into rd.

Mnemonic
pack rd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 8 8 8 1 8 © rs2 rst 10 © rd ® 1.1 8 8 1 1
PACK PACK oP

Description

The pack instruction packs the XLEN/2-bit lower halves of rs7 and rs2 into rd, with rs7 in the lower
half and rs2 in the upper half.

Operation

let lo_half : bits(xlen/2) X(rs1)[xlen/2-1..0];
let hi_half : bits(xlen/2) X(rs2)[xlen/2-1..0];
X(rd) = EXTZ(hi_half @ lo_half);

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified
For RV32, the pack instruction with rs2=xe is the zext.h instruction. Hence, for RV32,
o any extension that contains the pack instruction also contains the zext.h instruction

(but not necessarily the c.zext.h instruction, which is only guaranteed to exist if both
the Zcb and Zbb extensions are implemented).

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 267

30.5.27. packh

Synopsis
Pack the low bytes of rs7 and rs2 into rd.

Mnemonic

packh rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 8 8 8 1 8 © rs2 rst 11 1 rd ® 1.1 8 8 1 1
PACKH PACKH oP

Description

The packh instruction packs the least-significant bytes of rs7 and rs2 into the 16 least-significant
bits of rd, zero extending the rest of rd.

Operation

let lo_half : bits(8) X(rs1)[7..0];
let hi_half : bits(8) = X(rs2)[7..0];
X(rd) = EXTZ(hi_half @ lo_half);

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 268
30.5.28. packw

Synopsis
Pack the low 16-bits of rs7 and rs2 into rd on RV64.

Mnemonic

packw rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 1 7 6 2 10
® 8 8 8 1 8 © rs2 rs1 10 © rd ® 1 1 1 0|1 1
Description

This instruction packs the low 16 bits of rs7 and rs2 into the 32 least-significant bits of rd, sign
extending the 32-bit result to the rest of rd. This instruction only exists on RV64 based systems.

Operation

let lo_half : bits(16) X(rs1)[15..0];
let hi_half : bits(16) = X(rs2)[15..0];
X(rd) = EXTS(hi_half @ lo_half);

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

For RV64, the packw instruction with rs2=x0 is the zext.h instruction. Hence, for RV64,

0 any extension that contains the packw instruction also contains the zext.h instruction
(but not necessarily the c.zext.h instruction, which is only guaranteed to exist if both
the Zcb and Zbb extensions are implemented).

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 269

30.5.29. rev8

Synopsis
Byte-reverse register

Mnemonic

rev8 rd, rs

Encoding (RV32)

31 20 19 15 14 12 1M 7 6)
® 11 8 1 8 8 1 10 0 6 rs 1 0 1 rd ® 8 1 8 0 1 1
OP-IMM
Encoding (RV64)
31 20 19 15 14 12 1M 7 6 0
® 11 8 1 8 1 1 10 0 © rs 1 0 1 rd ® 8 1 8 0 1 1
OP-IMM
Description
This instruction reverses the order of the bytes in rs.
Operation
let input = X(rs);
let output : xlenbits = 0;
let j = xlen - 1;
foreach (i from 0 to (xlen - 8) by 8) {
output[i..(i + 7)] = inputl(F - 7)..31;
j=73-8;
}
X[rd] = output
Note
e The rev8 mnemonic corresponds to different instruction encodings in RV32 and
RV64.
Software Hint
o The byte-reverse operation is only available for the full register width. To emulate
word-sized and halfword-sized byte-reversal, perform a rev8 rd,rs followed by a srai

rd,rd,K, where K is XLEN-32 and XLEN-16, respectively.

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 270

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 271

30.5.30. brev8

Synopsis
Reverse the bits in each byte of a source register.

Mnemonic
brev8 rd, rs
Encoding
31 20 19 15 14 12 11 7 6)
® 11 8 1 08 8 60 0 1 1 1 rs 1 0 1 rd ® 8 1 8 0 1 1
OP-IMM
Description
This instruction reverses the order of the bits in every byte of a register.
Operation
result : xlenbits = EXTZ(Gb0);
foreach (i from 0 to sizeof(xlen) by 8) {
result[i+7..i] = reverse_bits_in_byte(X(rsl1)[i+7..1i]);
b
X(rd) = result;
Included in
Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 272

30.5.31. rol

Synopsis
Rotate Left (Register)

Mnemonic

rol rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

o 1.1 06 0 0 0 rs2 rsi 0 0 1 rd e 1.1 06 0 1 1
ROL ROL oP

Description

This instruction performs a rotate left of rs7 by the amount in least-significant log2(XLEN) bits of
rs2.

Operation

let shamt = if xlen == 32
then X(rs2)[4..0]
else X(rs2)[5..0];
let result = (X(rsl) << shamt) | (X(rs1) >> (xlen - shamt));

X(rd) = result;

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Ratified
Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 273

30.5.32. rolw

Synopsis
Rotate Left Word (Register)

Mnemonic

rolw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 11 8 8 8 © rs2 rst 0 0 1 rd ® 1.1 1 8 1 1
ROLW ROLW OP-32

Description

This instruction performs a rotate left on the least-significant word of rs7 by the amount in least-
significant 5 bits of rs2. The resulting word value is sign-extended by copying bit 31 to all of the
more-significant bits.

Operation

let rsl = EXTZ(X(rs1)[31..06]1)

let shamt = X(rs2)[4..0];

let result = (rsl << shamt) | (rsl1 >> (32 - shamt));
X(rd) = EXTS(result[31..0]);

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Ratified
Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 274

30.5.33. ror

Synopsis
Rotate Right

Mnemonic

ror rd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 11 8 8 8 © rs2 rst 10 1 rd ® 1.1 8 8 1 1
ROR ROR oP

Description

This instruction performs a rotate right of rs7 by the amount in least-significant log2(XLEN) bits of
rs2.

Operation

let shamt = if xlen == 32
then X(rs2)[4..0]
else X(rs2)[5..0];
let result = (X(rsl) >> shamt) | (X(rsl) << (xlen - shamt));

X(rd) = result;

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Ratified
Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 275

30.5.34. rori

Synopsis
Rotate Right (Immediate)

Mnemonic

rori rd, rs1, shamt
Encoding (RV32)
31 25 24 20 19 15 14 12 11 7 6 o

O 1.1 0 0 08 © shamt rsi 1 0 1 rd O 1. 0 0 1 1
RORI RORI OP-IMM

=)

Encoding (RV64)

31 26 25 20 19 15 14 12 11 7 6)
® 11 08 0 © shamt rs1 10 1 rd ® 0 1 08 0 1 1
RORI RORI OP-IMM

Description

This instruction performs a rotate right of rs7 by the amount in the least-significant log2(XLEN) bits
of shamt. For RV32, the encodings corresponding to shamt[5]=1 are reserved.

Operation

let shamt = if xlen == 32
then shamt[4..0]
else shamt[5..0];
let result = (X(rsl) >> shamt) | (X(rsl) << (xlen - shamt));

X(rd) = result;

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Ratified
Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 276

30.5.35. roriw

Synopsis
Rotate Right Word by Immediate

Mnemonic

roriw rd, rs1, shamt

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 11 8 8 8 © shamt rst 10 1 rd ® 0 1 1 8 1 1
RORIW RORIW OP-IMM-32

Description

This instruction performs a rotate right on the least-significant word of rs7 by the amount in the
least-significant log2(XLEN) bits of shamt. The resulting word value is sign-extended by copying bit
31 to all of the more-significant bits.

Operation

let rsl_data = EXTZ(X(rs1)[31..0];
let result = (rsl_data >> shamt) | (rsl_data << (32 - shamt));

X(rd) = EXTS(result[31..0]);

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Ratified
Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5.36. rorw

Synopsis

Rotate Right Word (Register)

Mnemonic

rorw rd, rsi, rs2

30.5. Instructions (in alphabetical order) | Page 277

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 11 8 8 8 © rs2 rst 10 1 rd ® 1.1 1 8 1 1
RORW RORW OP-32

Description

This instruction performs a rotate right on the least-significant word of rs7 by the amount in least-
significant 5 bits of rs2. The resultant word is sign-extended by copying bit 31 to all of the more-

significant bits.

Operation

let rsl1 = EXTZ(X(rs1)[31..0])

let shamt = X(rs2)[4..0];
let result (rs1l >> shamt)

X(rd) = EXTS(result);

Included in

Extension

Zbb (Basic bit-manipulation)

| (rs1 << (32 - shamt));

Zbkb (Bit-manipulation for Cryptography)

Minimum version Lifecycle state
0.93 Ratified
v1.® Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 278
30.5.37. sext.b

Synopsis
Sign-extend byte

Mnemonic
sext.b rd, rs
Encoding
31 25 24 20 19 15 14 12 1 7 6)
® 11 8 0 8 8|0 8 1 68 © rsi o 0 1 rd ® 8 1 8 0 1 1
SEXT.B SEXT.B/SEXT.H OP-IMM
Description

This instruction sign-extends the least-significant byte in the source to XLEN by copying the most-
significant bit in the byte (i.e., bit 7) to all of the more-significant bits.

Operation

X(rd) = EXTS(X(rs)[7..01);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 279

30.5.38. sext.h

Synopsis
Sign-extend halfword

Mnemonic
sext.h rd, rs
Encoding
31 25 24 20 19 15 14 12 1 7 6)
® 11 8 0 08 8|0 0 1 0 1 rsi o 0 1 rd ® 8 1 8 0 1 1
SEXT.H SEXT.B/SEXT.H OP-IMM
Description

This instruction sign-extends the least-significant halfword in rs to XLEN by copying the most-
significant bit in the halfword (i.e., bit 15) to all of the more-significant bits.

Operation

X(rd) = EXTS(X(rs)[15..01);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 280
30.5.39. shiladd

Synopsis
Shift left by 1 and add

Mnemonic
shladd rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7

® 8 1 8 8 8 © rs2 rst ® 1 08 rd ® 11 8 ©
SH1ADD SH1ADD oP

Description

This instruction shifts rs7 to the left by 1 bit and adds it to rs2.

Operation

X(rd) = X(rs2) + (X(rsl1) << 1);

Included in

Extension Minimum version

Zba (Address generation instructions) 0.93

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Lifecycle state

Ratified

30.5. Instructions (in alphabetical order) | Page 281
30.5.40. sh1add.uw

Synopsis
Shift unsigned word left by 1 and add

Mnemonic
shladd.uw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 8 1 8 8 8 © rs2 rst ® 1 08 rd ® 1.1 1 8 1 1
SH1ADD.UW SH1ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition of two addends. The first addend is rs2. The
second addend is the unsigned value formed by extracting the least-significant word of rs7 and
shifting it left by 1 place.

Operation

let base = X(rs2);
let index = EXTZ(X(rs1)[31..0]1);

X(rd) = base + (index << 1);

Included in

Extension Minimum version Lifecycle state

Zba (Address generation instructions) 0.93 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 282
30.5.41. sh2add

Synopsis
Shift left by 2 and add

Mnemonic
sh2add rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7

® 8 1 8 8 8 © rs2 rst 10 © rd ® 11 8 ©
SH2ADD SH2ADD oP

Description

This instruction shifts rs7 to the left by 2 places and adds it to rs2.

Operation

X(rd) = X(rs2) + (X(rsl1) << 2);

Included in

Extension Minimum version

Zba (Address generation instructions) 0.93

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Lifecycle state

Ratified

30.5. Instructions (in alphabetical order) | Page 283

30.5.42. sh2add.uw

Synopsis
Shift unsigned word left by 2 and add

Mnemonic
sh2add.uw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 8 1 8 8 8 © rs2 rst 10 © rd ® 1.1 1 8 1 1
SH2ADD.UW SH2ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition of two addends. The first addend is rs2. The
second addend is the unsigned value formed by extracting the least-significant word of rs7 and
shifting it left by 2 places.

Operation

let base = X(rs2);
let index = EXTZ(X(rs1)[31..0]1);

X(rd) = base + (index << 2);

Included in

Extension Minimum version Lifecycle state

Zba (Address generation instructions) 0.93 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 284
30.5.43. sh3add

Synopsis
Shift left by 3 and add

Mnemonic
sh3add rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7

® 8 1 8 8 8 © rs2 rst 11 0 rd ® 11 8 ©
SH3ADD SH3ADD oP

Description

This instruction shifts rs7 to the left by 3 places and adds it to rs2.

Operation

X(rd) = X(rs2) + (X(rsl1) << 3);

Included in

Extension Minimum version

Zba (Address generation instructions) 0.93

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Lifecycle state

Ratified

30.5. Instructions (in alphabetical order) | Page 285
30.5.44. sh3add.uw

Synopsis
Shift unsigned word left by 3 and add

Mnemonic
sh3add.uw rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6)

® 8 1 8 8 8 © rs2 rst 11 0 rd ® 1.1 1 8 1 1
SH3ADD.UW SH3ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition of two addends. The first addend is rs2. The
second addend is the unsigned value formed by extracting the least-significant word of rs7 and
shifting it left by 3 places.

Operation

let base = X(rs2);
let index = EXTZ(X(rs1)[31..0]1);

X(rd) = base + (index << 3);

Included in

Extension Minimum version Lifecycle state

Zba (Address generation instructions) 0.93 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 286
30.5.45. slli.uw

Synopsis
Shift-left unsigned word (Immediate)

Mnemonic

slli.uw rd, rs1, shamt

Encoding

31 26 25 20 19 15 14 12 11 7 6 0

O 0 0 0 1 0 shamt rsi 0 0 1 rd e ¢ 1.1 0 1 1
SLLLUW SLLLUW OP-IMM-32

Description

This instruction takes the least-significant word of rs1, zero-extends it, and shifts it left by the
immediate.

Operation

X(rd) = (EXTZ(X(rs)[31..8]) << shamt);

Included in

Extension Minimum version Lifecycle state
Zba (Address generation instructions) 0.93 Ratified
o Architecture Explanation
This instruction is the same as slli with zext.w performed on rs1 before shifting.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 287

30.5.46. unzip

Synopsis

Place odd and even bits of the source register into upper and lower halves of the destination
register, respectively.

Mnemonic
unzip rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6)
® 8 8 8 1 0 0|0 1 1 1 1 rst 1 0 1 rd ® 8 1 8 0 1 1
OP-IMM
Description

This instruction scatters all of the odd and even bits of a source word into the high and low halves
of a destination word. It is the inverse of the zip instruction. This instruction is available only on
RV32.

Operation

foreach (i from 0 to xlen/2-1) {
X(rd)[i] = X(rs1)[2*i]
X(rd)[i+x1len/2] = X(rs1)[2*i+1]

Software Hint

e This instruction is useful for implementing the SHA3 cryptographic hash function on
a 32-bit architecture, as it implements the bit-interleaving operation used to speed
up the 64-bit rotations directly.

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) (RV32) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 288
30.5.47. xnor

Synopsis
Exclusive NOR

Mnemonic

xnor rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 11 7

® 1 8 8 8 8 © rs2 rst 10 © rd ® 11 8 ©
XNOR XNOR oP

Description

This instruction performs the bit-wise exclusive-NOR operation on rs7 and rs2.

Operation

X(rd) = ~(X(rs1) ~ X(rs2));

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Ratified
Zbkb (Bit-manipulation for Cryptography) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 289
30.5.48. xperm8

Synopsis
Byte-wise lookup of indices into a vector in registers.

Mnemonic

xperm8 rd, rsi1, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 2 1 0
o 0 1. 0 1 0 O rs2 rs1 1 0 O rd e 1.1 0 0|1 1
Description

The xperm8 instruction operates on bytes. The rs7 register contains a vector of XLEN/8 8-bit
elements. The rs2 register contains a vector of XLEN/8 8-bit indexes. The result is each element in
rs2 replaced by the indexed element in rs7, or zero if the index into rs2 is out of bounds.

Operation

val xperm8_lookup : (bits(8), xlenbits) -> bits(8)
function xperm8_lookup (idx, lut) = {
(lut >> (idx @ 06bBOB))[7..0]

function clause execute (XPERM8 (rs2,rsi,rd)) = {
result : xlenbits = EXTZ(0bO);
foreach(i from 0 to xlen by 8) {
result[i+7..i] = xperm8_lookup(X(rs2)[i+7..i], X(rsl1));
b
X(rd) = result;
RETIRE_SUCCESS

Included in

Extension Minimum version Lifecycle state

Zbkx (Crossbar permutations) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 290
30.5.49. xperm4

Synopsis
Nibble-wise lookup of indices into a vector.

Mnemonic

xperm4 rd, rsi, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 2 1 0
o 0 1. 0 1 0 O rs2 rs1 O 1 0O rd e 1.1 0 0|1 1
Description

The xperm4 instruction operates on nibbles. The rs7 register contains a vector of XLEN/4 4-bit
elements. The rs2 register contains a vector of XLEN/4 4-bit indexes. The result is each element in
rs2 replaced by the indexed element in rs7, or zero if the index into rs2 is out of bounds.

Operation

val xperm4_lookup : (bits(4), xlenbits) -> bits(4)
function xperm4_lookup (idx, lut) = {
(lut >> (idx @ 0b8O))[3..0]

function clause execute (XPERM4 (rs2,rsi,rd)) = {
result : xlenbits = EXTZ(0bO);
foreach(i from 0 to xlen by 4) {
result[i+3..i] = xperm4_Tlookup(X(rs2)[i+3..i], X(rs1));
b
X(rd) = result;
RETIRE_SUCCESS

Included in

Extension Minimum version Lifecycle state

Zbkx (Crossbar permutations) v1.0 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.5. Instructions (in alphabetical order) | Page 291

30.5.50. zext.h

Synopsis
Zero-extend halfword

Mnemonic

zext.h rad, rs

Encoding (RV32)

31 25 24 20 19 15 14 12 1 7 6 0
O 6 0 0 1 0 0|6 0 06 O O rs 1 68 0 rd e 1.1 0 0 1 1
ZEXT.H OoP

Encoding (RV64)

31 25 24 20 19 15 14 12 11 7 6)
® 6 8 68 1 ®© 0|0 06 6 68 O rs 1.0 0 rd ® 1 1 1 68 1 1

ZEXT.H OP-32
Description

This instruction zero-extends the least-significant halfword of the source to XLEN by inserting O's
into all of the bits more significant than 15.

Operation

X(rd) = EXTZ(X(rs)[15..01);

Note
The zext.h mnemonic corresponds to different instruction encodings in RV32 and
RV64.

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Ratified

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.6. Software optimization guide | Page 292

30.5.51. zip

Synopsis
Interleave upper and lower halves of the source register into odd and even bits of the destination
register, respectively.

Mnemonic
zip rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6)
® 8 8 8 1 0 0|0 1 1 1 1 rst 0 o 1 rd ® 8 1 8 0 1 1
OP-IMM
Description

This instruction gathers bits from the high and low halves of the source word into odd/even bit
positions in the destination word. It is the inverse of the unzip instruction. This instruction is
available only on RV32.

Operation

foreach (i from 0 to xlen/2-1) {
X(rd)[2%i] = X(rs1)[i]
X(rd)[2%i+1] = X(rsl1)[i+xlen/2]
}

Software Hint

e This instruction is useful for implementing the SHA3 cryptographic hash function on
a 32-bit architecture, as it implements the bit-interleaving operation used to speed
up the 64-bit rotations directly.

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) (RV32) v1.0 Ratified

30.6. Software optimization guide

30.6.1. strlen
The orc.b instruction allows for the efficient detection of NUL bytes in an XLEN-sized chunk of data:

® the result of orc.b on a chunk that does not contain any NUL bytes will be all-ones, and

® after a bitwise-negation of the result of orc.b, the number of data bytes before the first NUL byte (if
any) can be detected by ctz/clz (depending on the endianness of data).

A full example of a strlen function, which uses these techniques and also demonstrates the use of it

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.6. Software optimization guide | Page 293

for unaligned/partial data, is the following:

#include <sys/asm.h>

.text
.globl strlen
.type strlen, @function

strlen:
andi a3, a0, (SZREG-1) // offset
andi al, a®, -SZREG // align pointer
.Lprologue:
11 a4, SZREG
sub a4, a4, a3 // XLEN - offset
s1li a3, a3, 3 // offset * 8
REG_L a2, 0(al) // chunk
/*

* Shift the partial/unaligned chunk we loaded to remove the bytes
* from before the start of the string, adding NUL bytes at the end.

*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
srl a2, a2 ,a3 // chunk >> (offset * 8)
#else
s1l a2, a2, a3
#endif
orc.b a2, a2
not a2, a2
/*
* Non-NUL bytes in the string have been expanded to 0x00, while

)(_

NUL bytes have become Oxff. Search for the first set bit

* (corresponding to a NUL byte in the original chunk).
*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
ctz a2, a2
#else
clz a2, a2
#endif
/*

* The first chunk is special: compare against the number of valid
* bytes in this chunk.
*/
srli a0, a2, 3
bgtu a4, al, .Ldone
addi a3, al, SZREG
1i a4, -1
.align 2
/*
* Qur critical loop is 4 instructions and processes data in 4 byte
* or 8 byte chunks.
*/
.Lloop:
REG_L a2, SZREG(al)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.6. Software optimization guide | Page 294

addi al, al, SZREG
orc.b a2, a2

beq a2, a4, .Lloop
.Lepilogue:
not a2, a2
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
ctz a2, a2
#else
clz a2, a2
#endif
sub al, al, a3

add a0, a@, al

srli a2, a2, 3

add a0, a0, a2
.Ldone:

ret

30.6.2. strcmp

#include <sys/asm.h>

.text
.globl strcmp
.type strcmp, @function

strcmp:
or a4, ad, al
1i t2, -1

and a4, a4, SZREG-1
bnez a4, .Lsimpleloop

Main loop for aligned strings
.Lloop:

REG_L a2, 0(a0)

REG_L a3, 0(al)

orc.b t0, a2

bne t0, t2, .Lfoundnull

addi a0, a0, SZREG

addi al, al, SZREG

beq a2, a3, .Lloop

Words don't match, and no null byte in first word.
Get bytes in big-endian order and compare.
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
rev8 a2, a2
rev8 a3, a3
#endif
Synthesize (a2 >= a3) ? 1 : -1 in a branchless sequence.
sltu a0, a2, a3

The RISC-V Instruction Set Manual Volume I | © RISC-V International

30.6. Software optimization guide | Page 295

neg a0, ab
ori a0, alb, 1
ret

.Lfoundnull:
Found a null byte.
If words don't match, fall back to simple loop.
bne a2, a3, .Lsimpleloop

Otherwise, strings are equal.
1i ag, 0
ret

Simple loop for misaligned strings
.Lsimpleloop:

lbu a2, 0(a0)

1bu a3, 0(al)

addi a0, a0, 1

addi a1, al, 1

bne a2, a3, 1f

bnez a2, .Lsimpleloop

1:
sub a0, a2, a3
ret
.size strcmp, .-strcmp

The RISC-V Instruction Set Manual Volume I | © RISC-V International

Chapter 31. "P" Extension for Packed-SIMD Instructions, Version 0.2 | Page 296

Chapter 31. "P" Extension for Packed-SIMD Instructions,
Version 0.2

Discussions at the 5th RISC-V workshop indicated a desire to drop this packed-SIMD
proposal for floating-point registers in favor of standardizing on the V extension for
e large floating-point SIMD operations. However, there was interest in packed-SIMD
fixed-point operations for use in the integer registers of small RISC-V
implementations. A task group is working to define the new P extension.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.1. Introduction | Page 297

Chapter 32. "V" Standard Extension for Vector Operations,
Version 1.0

The base vector extension is intended to provide general support for data-parallel
execution within the 32-bit instruction encoding space, with later vector extensions
supporting richer functionality for certain domains.

32.1. Introduction

This spec includes the complete set of currently frozen vector instructions. Other instructions that have
been considered during development but are not present in this document are not included in the
review and ratification process, and may be completely revised or abandoned. Section 32.18 lists the
standard vector extensions and which instructions and element widths are supported by each
extension.

32.2. Implementation-defined Constant Parameters
Each hart supporting a vector extension defines two parameters:

1. The maximum size in bits of a vector element that any operation can produce or consume, ELEN =
8, which must be a power of 2.

2. The number of bits in a single vector register, VLEN = ELEN, which must be a power of 2, and must
be no greater than 2.

Standard vector extensions (Section 32.18) and architecture profiles may set further constraints on
ELEN and VLEN.

o Future extensions may allow ELEN > VLEN by holding one element using bits from
multiple vector registers, but this current proposal does not include this option.

The upper limit on VLEN allows software to know that indices will fit into 16 bits
(largest VLMAX of 65,536 occurs for LMUL=8 and SEW=8 with VLEN=65,536). Any

o future extension beyond 64Kib per vector register will require new configuration
instructions such that software using the old configuration instructions does not see
greater vector lengths.

The vector extension supports writing binary code that under certain constraints will execute portably
on harts with different values for the VLEN parameter, provided the harts support the required element
types and instructions.

o Code can be written that will expose differences in implementation parameters.
e In general, thread contexts with active vector state cannot be migrated during
execution between harts that have any difference in VLEN or ELEN parameters.

32.3. Vector Extension Programmer’s Model

The vector extension adds 32 vector registers, and seven unprivileged CSRs (vstart, vxsat, vxrm, vcsr,
vtype, v1, vlenb) to a base scalar RISC-V ISA.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.3. Vector Extension Programmer’s Model | Page 298

Table 44. New vector CSRs

Address Privilege Name Description

Ox008 URW vstart Vector start position
Ox009 URW vxsat Fixed-Point Saturate Flag
OxO0A URW vxrm Fixed-Point Rounding Mode
OxQO0F URW vesr Vector control and status register
OxC20 URO vl Vector length
OxC21 URO vtype Vector data type register
OxC22 URO vlenb VLEN/8 (vector register length in bytes)
e The four CSR numbers 0xp0B-0xB0E are tentatively reserved for future vector CSRs,
some of which may be mirrored into vcsr.

32.3.1. Vector Registers
The vector extension adds 32 architectural vector registers, ve-v31 to the base scalar RISC-V ISA.

Each vector register has a fixed VLEN bits of state.

32.3.2. Vector Context Status in mstatus

A vector context status field, vs, is added to mstatus[168:9] and shadowed in sstatus[10:9]. It is defined
analogously to the floating-point context status field, Fs.

Attempts to execute any vector instruction, or to access the vector CSRs, raise an illegal-instruction
exception when mstatus.Vs is set to Off.

When mstatus.Vs is set to Initial or Clean, executing any instruction that changes vector state, including
the vector CSRs, will change mstatus.vs to Dirty. Implementations may also change mstatus.vs from
Initial or Clean to Dirty at any time, even when there is no change in vector state.

o Accurate setting of mstatus.VS is an optimization. Software will typically use VS to
reduce context-swap overhead.

If mstatus.vs is Dirty, mstatus.SD is 1; otherwise, mstatus.SD is set in accordance with existing
specifications.

Implementations may have a writable misa.v field. Analogous to the way in which the floating-point unit
is handled, the mstatus.Vs field may exist even if misa.V is clear.

o Allowing mstatus.VS to exist when misa.v is clear, enables vector emulation and
simplifies handling of mstatus.VS in systems with writable misa.V.
32.3.3. Vector Context Status in vsstatus

When the hypervisor extension is present, a vector context status field, vs, is added to vsstatus[10:9]. It
is defined analogously to the floating-point context status field, Fs.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.3. Vector Extension Programmer’s Model | Page 299

When V=1, both vsstatus.Vs and mstatus.VS are in effect: attempts to execute any vector instruction, or
to access the vector CSRs, raise an illegal-instruction exception when either field is set to Off.

When V=1 and neither vsstatus.VS nor mstatus.Vs is set to Off, executing any instruction that changes
vector state, including the vector CSRs, will change both mstatus.vs and vsstatus.vs to Dirty.
Implementations may also change mstatus.VS or vsstatus.VS from Initial or Clean to Dirty at any time,
even when there is no change in vector state.

If vsstatus.vs is Dirty, vsstatus.SD is 1; otherwise, vsstatus.SD is set in accordance with existing
specifications.

If mstatus.vs is Dirty, mstatus.SD is 1; otherwise, mstatus.SD is set in accordance with existing
specifications.

For implementations with a writable misa.v field, the vsstatus.Vvs field may exist even if misa.v is clear.

32.3.4. Vector Type (vtype) Register

The read-only XLEN-wide vector type CSR, vtype provides the default type used to interpret the
contents of the vector register file, and can only be updated by vset{i}v1{i} instructions. The vector
type determines the organization of elements in each vector register, and how multiple vector registers
are grouped. The vtype register also indicates how masked-off elements and elements past the current
vector length in a vector result are handled.

0 Allowing updates only via the vset{i}v1{i} instructions simplifies maintenance of the
vtype register state.

The vtype register has five fields, vilt, vma, vta, vsew[2:08], and vimul[2:8]. Bits vtype[XLEN-2:8] should be
written with zero, and non-zero values in this field are reserved.

31 30 8 7 6 5 3 2 0

vill reserved vmalvta | vsew[2:0] | vimul[2:0]

e This diagram shows the layout for RV32 systems, whereas in general vill should be
at bit XLEN-1.

Table 45. vtype register layout

Bits Name Description
XLEN-1 vill Illegal value if set
XLEN-2:8 © Reserved if non-zero
7 vma Vector mask agnostic
6 vta Vector tail agnostic

5:3 vsew[2:0] Selected element width (SEW) setting

2:0 vimul[2:0] Vector register group multiplier (LMUL) setting

A small implementation supporting ELEN=32 requires only seven bits of state in
o vtype: two bits for ma and ta, two bits for vsew[1:0] and three bits for vimul[2:0]. The

illegal value represented by vill can be internally encoded using the illegal 64-bit

combination in vsew[1:0] without requiring an additional storage bit to hold vill

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.3. Vector Extension Programmer’s Model | Page 300

o Further standard and custom vector extensions may extend these fields to support a
greater variety of data types.

The primary motivation for the vtype CSR is to allow the vector instruction set to fit
into a 32-bit instruction encoding space. A separate vset{i}v1{i} instruction can be
used to set vl and/or vtype fields before execution of a vector instruction, and
implementations may choose to fuse these two instructions into a single internal

o vector microop. In many cases, the vl and vtype values can be reused across multiple
instructions, reducing the static and dynamic instruction overhead from the
vset{i}v1{i} instructions. It is anticipated that a future extended 64-bit instruction
encoding would allow these fields to be specified statically in the instruction
encoding.

32.3.4.1. Vector Selected Element Width (vsew[2:0])

The value in vsew sets the dynamic selected element width (SEW). By default, a vector register is viewed
as being divided into VLEN/SEW elements.

Table 46. vsew[2:0] (selected element width) encoding

vsew[2:0] SEW

0 0 0 8
0 0 1 16
0 1 0 32
O 1 1 64

1 X X Reserved

e While it is anticipated the larger vsew[2:0] encodings (100-111) will be used to encode
larger SEW, the encodings are formally reserved at this point.

Table 47. Example VLEN = 128 bits

SEW Elements per vector register

64 2
32 4
16 8
8 16

The supported element width may vary with LMUL.

The current set of standard vector extensions do not vary supported element width
with LMUL. Some future extensions may support larger SEWs only when bits from
multiple vector registers are combined using LMUL. In this case, software that relies
0 on large SEW should attempt to use the largest LMUL, and hence the fewest vector
register groups, to increase the number of implementations on which the code will
run. The vill bit in vtype should be checked after setting vtype to see if the
configuration is supported, and an alternate code path should be provided if it is not.
Alternatively, a profile can mandate the minimum SEW at each LMUL setting.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.3. Vector Extension Programmer’s Model | Page 301
32.3.4.2. Vector Register Grouping (vimul[2:0])

Multiple vector registers can be grouped together, so that a single vector instruction can operate on
multiple vector registers. The term vector register group is used herein to refer to one or more vector
registers used as a single operand to a vector instruction. Vector register groups can be used to
provide greater execution efficiency for longer application vectors, but the main reason for their
inclusion is to allow double-width or larger elements to be operated on with the same vector length as
single-width elements. The vector length multiplier, LMUL, when greater than 1, represents the default
number of vector registers that are combined to form a vector register group. Implementations must
support LMUL integer values of 1, 2, 4, and 8.

The vector architecture includes instructions that take multiple source and
destination vector operands with different element widths, but the same number of

o elements. The effective LMUL (EMUL) of each vector operand is determined by the
number of registers required to hold the elements. For example, for a widening add
operation, such as add 32-bit values to produce 64-bit results, a double-width result
requires twice the LMUL of the single-width inputs.

LMUL can also be a fractional value, reducing the number of bits used in a single vector register.
Fractional LMUL is used to increase the number of effective usable vector register groups when
operating on mixed-width values.

With only integer LMUL values, a loop operating on a range of sizes would have to
allocate at least one whole vector register (LMUL=1) for the narrowest data type and
then would consume multiple vector registers (LMUL>1) to form a vector register
group for each wider vector operand. This can limit the number of vector register
groups available. With fractional LMUL, the widest values need occupy only a single

o vector register while narrower values can occupy a fraction of a single vector register,
allowing all 32 architectural vector register names to be used for different values in a
vector loop even when handling mixed-width values. Fractional LMUL implies
portions of vector registers are unused, but in some cases, having more shorter
register-resident vectors improves efficiency relative to fewer longer register-
resident vectors.

Implementations must provide fractional LMUL settings that allow the narrowest supported type to
occupy a fraction of a vector register corresponding to the ratio of the narrowest supported type's
width to that of the largest supported type’s width. In general, the requirement is to support LMUL =
SEWu/ELEN, where SEW,,y is the narrowest supported SEW value and ELEN is the widest supported
SEW value. In the standard extensions, SEW,=8. For standard vector extensions with ELEN=32,
fractional LMULs of 1/2 and 1/4 must be supported. For standard vector extensions with ELEN=64,
fractional LMULs of 1/2, 1/4, and 1/8 must be supported.

When LMUL < SEW,wELEN, there is no guarantee an implementation would have
enough bits in the fractional vector register to store at least one element, as

o VLEN=ELEN is a valid implementation choice. For example, with VLEN=ELEN=32,
and SEW,;=8, an LMUL of 1/8 would only provide four bits of storage in a vector
register.

For a given supported fractional LMUL setting, implementations must support SEW settings between
SEW,n and LMUL * ELEN, inclusive.

The use of vtype encodings with LMUL < SEW\w/ELEN is reserved, but implementations can set vitt if
they do not support these configurations.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.3. Vector Extension Programmer’s Model | Page 302

Requiring all implementations to set vill in this case would prohibit future use of
o this case in an extension, so to allow for a future definition of LMUL<SEW,,,/ELEN
behavior, we consider the use of this case to be reserved.

o It is recommended that assemblers provide a warning (not an error) if a vsetvli
instruction attempts to write an LMUL < SEW,,;;/ELEN.

LMUL is set by the signed vimut field in vtype (i.e., LMUL = 2mtzel),

The derived value VLMAX = LMUL*VLEN/SEW represents the maximum number of elements that can
be operated on with a single vector instruction given the current SEW and LMUL settings as shown in
the table below.

vimul[2:0] LMUL #groups VLMAX Registers grouped with register n
1 06 0 - - - reserved

1 0 1 1/8 32 VLEN/SEW/8 v n (single register in group)

1 1 0 1/4 32 VLEN/SEW/4 v n (single register in group)

11 1 12 32 VLEN/SEW/2 v n (single register in group)

® 0 0 1 32 VLEN/SEW v n (single register in group)

® 0 1 2 16 2*VLEN/SEW v n, v n+1

0 1 0 4 8 4*VLEN/SEW vn, .., vn+3

® 1 1 8 4 8*VLEN/SEW v n, .., v n+7

When LMUL=2, the vector register group contains vector register v n and vector register v n+1,
providing twice the vector length in bits. Instructions specifying an LMUL=2 vector register group with
an odd-numbered vector register are reserved.

When LMUL=4, the vector register group contains four vector registers, and instructions specifying an
LMUL=4 vector register group using vector register numbers that are not multiples of four are
reserved.

When LMUL=8, the vector register group contains eight vector registers, and instructions specifying an
LMUL=8 vector register group using register numbers that are not multiples of eight are reserved.

Mask registers are always contained in a single vector register, regardless of LMUL.

32.3.4.3. Vector Tail Agnostic and Vector Mask Agnostic vta and vma

These two bits modify the behavior of destination tail elements and destination inactive masked-off
elements respectively during the execution of vector instructions. The tail and inactive sets contain
element positions that are not receiving new results during a vector operation, as defined in Section
32.5.4.

All systems must support all four options:

vta vma Tail Elements Inactive Elements
® O undisturbed undisturbed

® 1 undisturbed agnostic

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.3. Vector Extension Programmer’s Model | Page 303

vta vma Tail Elements Inactive Elements
1 O agnostic undisturbed

1 1 agnostic agnostic

Mask destination tail elements are always treated as tail-agnostic, regardless of the setting of vta.

When a set is marked undisturbed, the corresponding set of destination elements in a vector register
group retain the value they previously held.

When a set is marked agnostic, the corresponding set of destination elements in any vector
destination operand can either retain the value they previously held, or are overwritten with 1s. Within a
single vector instruction, each destination element can be either left undisturbed or overwritten with 1s,
in any combination, and the pattern of undisturbed or overwritten with 1s is not required to be
deterministic when the instruction is executed with the same inputs.

The agnostic policy was added to accommodate machines with vector register
renaming. With an undisturbed policy, all elements would have to be read from the

o old physical destination vector register to be copied into the new physical destination
vector register. This causes an inefficiency when these inactive or tail values are not
required for subsequent calculations.

The value of all 1s instead of all ®s was chosen for the overwrite value to discourage
software developers from depending on the value written.

A simple in-order implementation can ignore the settings and simply execute all
vector instructions using the undisturbed policy. The vta and vma state bits must still
be provided in vtype for compatibility and to support thread migration.

An out-of-order implementation can choose to implement tail-agnostic + mask-
agnostic using tail-agnostic + mask-undisturbed to reduce implementation
complexity.

The definition of agnostic result policy is left loose to accommodate migrating
application threads between harts on a small in-order core (which probably leaves
agnostic regions undisturbed) and harts on a larger out-of-order core with register
renaming (which probably overwrites agnostic elements with 1s). As it might be

o necessary to restart in the middle, we allow arbitrary mixing of agnostic policies
within a single vector instruction. This allowed mixing of policies also enables
implementations that might change policies for different granules of a vector
register, for example, using undisturbed within a granule that is actively operated on
but renaming to all 1s for granules in the tail.

In addition, except for mask load instructions, any element in the tail of a mask result can also be
written with the value the mask-producing operation would have calculated with vi=VLMAX.
Furthermore, for mask-logical instructions and vmsbf.m, vmsif.m, vmsof.m mask-manipulation instructions,
any element in the tail of the result can be written with the value the mask-producing operation would
have calculated with vi=VLEN, SEW=8, and LMUL=8 (i.e, all bits of the mask register can be
overwritten).

Mask tails are always treated as agnostic to reduce complexity of managing mask
o data, which can be written at bit granularity. There appears to be little software need
to support tail-undisturbed for mask register values. Allowing mask-generating

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.3. Vector Extension Programmer’s Model | Page 304

instructions to write back the result of the instruction avoids the need for logic to
mask out the tail, except mask loads cannot write memory values to destination mask
tails as this would imply accessing memory past software intent.

The assembly syntax adds two mandatory flags to the vsetvli instruction:

ta # Tail agnostic
tu # Tail undisturbed
ma # Mask agnostic
mu # Mask undisturbed

vsetvli tO, al, e32, m4, ta, ma # Tail agnostic, mask agnostic
vsetvli t0, a0, e32, m4, tu, ma # Tail undisturbed, mask agnostic
vsetvli t0O, aB, e32, m4, ta, mu # Tail agnostic, mask undisturbed
vsetvli t0, a0, e32, m4, tu, mu # Tail undisturbed, mask undisturbed

Prior to v0.9, when these flags were not specified on a vsetvli, they defaulted to
mask-undisturbed/tail-undisturbed. The use of vsetvli without these flags is
deprecated, however, and specifying a flag setting is now mandatory. The default

o should perhaps be tail-agnostic/mask-agnostic, so software has to specify when it
cares about the non-participating elements, but given the historical meaning of the
instruction prior to introduction of these flags, it was decided to always require them
in future assembly code.

32.3.4.4. Vector Type Illegal (vill)

The vill bit is used to encode that a previous vset{i}vl{i} instruction attempted to write an
unsupported value to vtype.

o The vill bit is held in bit XLEN-1 of the CSR to support checking for illegal values
with a branch on the sign bit.

If the vill bit is set, then any attempt to execute a vector instruction that depends upon vtype will raise
an illegal-instruction exception.

o vset{i}vi{i} and whole register loads and stores do not depend upon vtype.

When the vill bit is set, the other XLEN-1 bits in vtype shall be zero.

32.3.5. Vector Length (v1) Register

The XLEN-bit-wide read-only vi CSR can only be updated by the vset{i}vl{i} instructions, and the
fault-only-first vector load instruction variants.

The vi register holds an unsigned integer specifying the number of elements to be updated with
results from a vector instruction, as further detailed in Section 32.5.4.

The number of bits implemented in vl depends on the implementation’s maximum
e vector length of the smallest supported type. The smallest vector implementation
with VLEN=32 and supporting SEW=8 would need at least six bits in vl to hold the

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.3. Vector Extension Programmer’s Model | Page 305

values 0-32 (VLEN=32, with LMUL=8 and SEW=8, yields VLMAX=32).

32.3.6. Vector Byte Length (vienn) Register

The XLEN-bit-wide read-only CSR vilenb holds the value VLEN/8, i.e., the vector register length in bytes.

o The value in vlenb is a design-time constant in any implementation.
Without this CSR, several instructions are needed to calculate VLEN in bytes, and the
o code has to disturb current vi and vtype settings which require them to be saved and
restored.

32.3.7. Vector Start Index (vstart) Register

The XLEN-bit-wide read-write vstart CSR specifies the index of the first element to be executed by a
vector instruction, as described in Section 32.5.4.

Normally, vstart is only written by hardware on a trap on a vector instruction, with the vstart value
representing the element on which the trap was taken (either a synchronous exception or an
asynchronous interrupt), and at which execution should resume after a resumable trap is handled.

All vector instructions are defined to begin execution with the element number given in the vstart CSR,
leaving earlier elements in the destination vector undisturbed, and to reset the vstart CSR to zero at
the end of execution.

o All vector instructions, including vset{i}vi1{i}, reset the vstart CSR to zero.
vstart is not modified by vector instructions that raise illegal-instruction exceptions.

The vstart CSR is defined to have only enough writable bits to hold the largest element index (one less
than the maximum VLMAX).

The maximum vector length is obtained with the largest LMUL setting (8) and the
o smallest SEW setting (8), so VLMAX_max = 8*VLEN/8 = VLEN. For example, for
VLEN=2586, vstart would have 8 bits to represent indices from ® through 255.

The use of vstart values greater than the largest element index for the current vtype setting is reserved.

It is recommended that implementations trap if vstart is out of bounds. It is not
0 required to trap, as a possible future use of upper vstart bits is to store imprecise
trap information.

The vstart CSR is writable by unprivileged code, but non-zero vstart values may cause vector
instructions to run substantially slower on some implementations, so vstart should not be used by
application programmers. A few vector instructions cannot be executed with a non-zero vstart value
and will raise an illegal instruction exception as defined below.

o Making vstart visible to unprivileged code supports user-level threading libraries.

Implementations are permitted to raise illegal instruction exceptions when attempting to execute a
vector instruction with a value of vstart that the implementation can never produce when executing
that same instruction with the same vtype setting.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.3. Vector Extension Programmer’s Model | Page 306

For example, some implementations will never take interrupts during execution of a
vector arithmetic instruction, instead waiting until the instruction completes to take

o the interrupt. Such implementations are permitted to raise an illegal instruction
exception when attempting to execute a vector arithmetic instruction when vstart is
nonzero.

When migrating a software thread between two harts with different
microarchitectures, the vstart value might not be supported by the new hart

o microarchitecture. The runtime on the receiving hart might then have to emulate
instruction execution up to the next supported vstart element position. Alternatively,
migration events can be constrained to only occur at mutually supported vstart
locations.

32.3.8. Vector Fixed-Point Rounding Mode (vxrm) Register

The vector fixed-point rounding-mode register holds a two-bit read-write rounding-mode field in the
least-significant bits (vxrm[1:0]). The upper bits, vxrm[XLEN-1:2], should be written as zeros.

The vector fixed-point rounding-mode is given a separate CSR address to allow independent access,
but is also reflected as a field in vesr.

o A new rounding mode can be set while saving the original rounding mode using a
single csrwi instruction.

The fixed-point rounding algorithm is specified as follows. Suppose the pre-rounding result is v, and d
bits of that result are to be rounded off. Then the rounded result is (v >> d) + r, where r depends on
the rounding mode as specified in the following table.

Table 48. vxrm encoding

vxrm[1:0] Abbreviation Rounding Mode Rounding increment, r

0) rnu round-to-nearest-up (add +0.5 LSB) v[d-1]

0 1 rne round-to-nearest-even v[d-1] & (v[d-2:01#0 | v[d])
1] rdn round-down (truncate) 0

1 1 rod round-to-odd (OR bits into LSB, aka "jam") lv[d] & v[d-1:0]#0

The rounding functions:

(unsigned(v) >> d) + r

roundoff_unsigned(v, d) =
= (signed(v) >> d) + r

roundoff_signed(v, d)

are used to represent this operation in the instruction descriptions below.

32.3.9. Vector Fixed-Point Saturation Flag (vxsat)

The vxsat CSR has a single read-write least-significant bit (vxsat[0]) that indicates if a fixed-point
instruction has had to saturate an output value to fit into a destination format. Bits vxsat[XLEN-1:1]
should be written as zeros.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.4. Mapping of Vector Elements to Vector Register State | Page 307

The vxsat bit is mirrored in vcsr.

32.3.10. Vector Control and Status (vcsr) Register

The vxrm and vxsat separate CSRs can also be accessed via fields in the XLEN-bit-wide vector control
and status CSR, vesr.
Table 49. vcsr layout
Bits Name Description
XLEN-1:3 Reserved
2:1 vxrm[1:0] Fixed-point rounding mode

O vxsat Fixed-point accrued saturation flag

32.3.11. State of Vector Extension at Reset

The vector extension must have a consistent state at reset. In particular, vtype and vi must have values
that can be read and then restored with a single vsetvl instruction.

e It is recommended that at reset, vtype.vill is set, the remaining bits in vtype are
zero, and vl is set to zero.

The vstart, vxrm, vxsat CSRs can have arbitrary values at reset.

o Most uses of the vector unit will require an initial vset{i}v1{i}, which will reset vstart.
The vxrm and vxsat fields should be reset explicitly in software before use.

The vector registers can have arbitrary values at reset.

32.4. Mapping of Vector Elements to Vector Register State

The following diagrams illustrate how different width elements are packed into the bytes of a vector
register depending on the current SEW and LMUL settings, as well as implementation VLEN. Elements
are packed into each vector register with the least-significant byte in the lowest-numbered bits.

The mapping was chosen to provide the simplest and most portable model for software, but might
appear to incur large wiring cost for wider vector datapaths on certain operations. The vector
instruction set was expressly designed to support implementations that internally rearrange vector
data for different SEW to reduce datapath wiring costs, while externally preserving the simple software
model.

For example, microarchitectures can track the EEW with which a vector register was
written, and then insert additional scrambling operations to rearrange data if the
register is accessed with a different EEW.

32.4.1. Mapping for LMUL = 1

When LMUL=1, elements are simply packed in order from the least-significant to most-significant bits
of the vector register.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.4. Mapping of Vector Elements to Vector Register State | Page 308

To increase readability, vector register layouts are drawn with bytes ordered from

0 right to left with increasing byte address. Bits within an element are numbered in a
little-endian format with increasing bit index from right to left corresponding to
increasing magnitude.

LMUL=1 examples.
The element index is given in hexadecimal and is shown placed at the
least-significant byte of the stored element.

VLEN=32h

Byte 3210

SEW=8b 3

SEW=16b
SEW=32b

PN
(oo RN

VLEN=64b

Byte 76543210

SEW=8b 7654321
SEW=16b 3 2 1
SEW=32b 1
SEW=64b

[N o B o Rl

VLEN=128b

(o]

Byte FEDCBA9876543210
SEW=8b FEDCBAZ@9
SEW=16b 7 6 5
SEW=32b 3
SEW=64b

= N N 00
[N oo B o)

VLEN=256b

Byte 1F1E1D1C1B1A19181716151413121110 F ED CB A 9 8 76 543210

SEW=8b 1F1E1D1C1B1A19181716151413121116 F EDCB A 98 76 5 432 10

SEW=16b F E D C B A 9 8 7 6 5 4 3 2 1 ©
0
0

SEW=32b 7 6 S 4 3 2 1
SEW=64b 3 2 1

32.4.2. Mapping for LMUL < 1

When LMUL < 1, only the first LMUL*VLEN/SEW elements in the vector register are used. The

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.4. Mapping of Vector Elements to Vector Register State | Page 309

remaining space in the vector register is treated as part of the tail, and hence must obey the vta
setting.

Example, VLEN=128b, LMUL=1/4

Byte FEDCBA9876543210
SEW=8b - - - - - - - - - - - - 3210
SEW=16b - - - - - - 1 0
SEW=32b - - - 0

32.4.3. Mapping for LMUL > 1

When vector registers are grouped, the elements of the vector register group are packed contiguously
in element order beginning with the lowest-numbered vector register and moving to the next-highest-
numbered vector register in the group once each vector register is filled.

LMUL > 1 examples

VLEN=32b, SEW=8b, LMUL=2

Byte 3210
v2*n 3210
v2xn+1l 7 6 5 4

VLEN=32b, SEW=16b, LMUL=2

Byte 3210
V2*n 1 0
v2xn+1l 3 2

VLEN=32b, SEW=16b, LMUL=4

Byte 3210
va*n 1 0
v4*n+1 3 2
V4*n+2 S 4
Vaxn+3 7 6

VLEN=32b, SEW=32b, LMUL=4

Byte 321
v4*n

vaxn+l

V4*n+2

V4*n+3

NN P OO

VLEN=64b, SEW=32b, LMUL=2

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.4. Mapping of Vector Elements to Vector Register State | Page 310

Byte
v2*n
v2xn+1l

VLEN=64b, SEW=32b, LMUL=4

Byte
va*xn
v4*n+l
V4*n+2
v4*n+3

765432
1
3

765432
1

3
S
7

10
0

1

VLEN=128b, SEW=32b, LMUL=2

Byte
v2*n
v2xn+1l

VLEN=128b, SEW=32b,

Byte
v4*n
vaxn+1l
V4*n+2
V4*n+3

N WO

FED

m o 9 N O

BA9S

2
6

LMUL=4

765 4

32.4.4. Mapping across Mixed-Width Operations

The vector ISA is designed to support mixed-width operations without requiring additional explicit
rearrangement instructions. The recommended software strategy when operating on multiple vectors
with different precision values is to modify vtype dynamically to keep SEW/LMUL constant (and hence

VLMAX constant).

The following example shows four different packed element widths (8b, 16b, 32b, 64b) in a VLEN=128b
implementation. The vector register grouping factor (LMUL) is increased by the relative element size
such that each group can hold the same number of vector elements (VLMAX=8 in this example) to

simplify stripmining code.

Example VLEN=128b, with SEW/LMUL=16

Byte
vn

vn

v2*n
v2xn+1l

va*n

FEDCBA®9S8

3 2
7 6
1

7 6
76

S
S

3 2
3 2

1
1

0
0

O 00 NOoO O

SEW=8b, LMUL=1/2

SEW=16b,

SEW=32b,

SEW=64b,

The RISC-V Instruction Set Manual Volume I | © RISC-V International

LMUL=1

LMUL=2

LMUL=4

32.5. Vector Instruction Formats | Page 311

vaxn+1l 3 2
vaxn+2 5 4
v4*n+3 7 6

The following table shows each possible constant SEW/LMUL operating point for loops with mixed-
width operations. Each column represents a constant SEW/LMUL operating point. Entries in table are
the LMUL values that yield that column’s SEW/LMUL value for the datawidth on that row. In each
column, an LMUL setting for a datawidth indicates that it can be aligned with the other datawidths in
the same column that also have an LMUL setting, such that all have the same VLMAX.

SEW/LMUL
1 2 4 8 16 32 64
SEW= 8 8 4 2 1 1/2 174 1/8
SEW= 16 8 4 2 1 1/2 174
SEW= 32 8 4 2 1 1/2
SEW= 64 8 4 2 1

Larger LMUL settings can also used to simply increase vector length to reduce instruction fetch and
dispatch overheads in cases where fewer vector register groups are needed.

32.4.5. Mask Register Layout

A vector mask occupies only one vector register regardless of SEW and LMUL.

Each element is allocated a single mask bit in a mask vector register. The mask bit for element 7 is
located in bit 7 of the mask register, independent of SEW or LMUL.

32.5. Vector Instruction Formats

The instructions in the vector extension fit under two existing major opcodes (LOAD-FP and STORE-
FP) and one new major opcode (OP-V).

Vector loads and stores are encoded within the scalar floating-point load and store major opcodes
(LOAD-FP/STORE-FP). The vector load and store encodings repurpose a portion of the standard scalar
floating-point load/store 12-bit immediate field to provide further vector instruction encoding, with bit
25 holding the standard vector mask bit (see Section 32.5.3.1).

Format for Vector Load Instructions under LOAD-FP major opcode

31 29 28 27 26 25 24 20 19 15 14 12 1 7 6 o

nf mew mop |vm lumop rsi width vd e ®© 8 ® 1 1 1
base address destination of load VL* unit-stride

31 29 28 27 26 25 24 20 19 15 14 12 1M 7 6)

nf mew mop |vm rs2 rsi width vd e © 0 ® 1 1 1

stride base address destination of load VLS* strided

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.5. Vector Instruction Formats | Page 312

31

29 28 27 26 25 24

20 19

15 14

12 1 7

nf mew

vm

vs2

rsi

width

vd

mop

O 0 0 1

1

address offsets

base address

destination of load

Format for Vector Store Instructions under STORE-FP major opcode

VLX* indexed

31 29 28 27 26 25 24 20 19 15 14 12 11 7
nf mew mop |vm sumop rsi width vs3 1 06 0 1 1
base address store data VS* unit-stride

31 29 28 27 26 25 24 20 19 15 14 12 11 7
nf mew mop |[vm rs2 rsi width vs3 1T 0 0 1 1
stride base address store data VSS* strided

31 29 28 27 26 25 24 20 19 15 14 12 11 7
nf mew mop |vm vs2 rs1 width vs3 1 0 0 1 1
address offsets base address store data VSX* indexed

Formats for Vector Arithmetic Instructions under OP-V major opcode

31 26 25 24 20 19 15 14 12 1 7
funct6 vm vs2 vsi 0O 0 O vd e 1 0 1 1
OPIVV
31 26 25 24 20 19 15 14 12 1 7
funct6 vm vs2 vs1 O 0 1 vd / rd e 1 0 1 1
OPFVV
31 26 25 24 20 19 15 14 12 1 7
funct6 vm vs2 vs1)) vd / rd O 1 0 1 1
OPMVV
31 26 25 24 20 19 15 14 12 1 7
functé vm vs2 imm[4:0]] 1 vd O 1 0 1 1
OPIVI
31 26 25 24 20 19 15 14 12 1 7
funct6 vm vs2 rsi 1 0 O vd O 1 0 1 1
OPIVX
31 26 25 24 20 19 15 14 12 1M 7
functé vm vs2 rsi 1 1 vd e 1 0 1 1
OPFVF
31 26 25 24 20 19 15 14 12 1 7
funct6 vm vs2 rsi 1] vd / rd O 1 0 1 1
OPMVX
Formats for Vector Configuration Instructions under OP-V major opcode
31 30 20 19 15 14 12 1 7
] vitypei[10:0] rsi 1 1 rd O 1 0 1 1
vsetvli

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.5. Vector Instruction Formats | Page 313

31 30 29 20 19 15 14 12 11 7 6 0

111 - 'v:cype'i[9:®']' - 'uirrlmm[éi:G]' 1'1'1 ' 'rd' ' 1'0'1'8'1'1'1
- — " — T et

31 30 25 24 20 19 15 14 12 1 7 6 0

1 ®'®'®'®'®'® ' 'r52' ' ' 'rs1' ' 1'1'1 ' 'rd' ' 1'8'1'8'1'1'1
— — — " — T el

Vector instructions can have scalar or vector source operands and produce scalar or vector results, and
most vector instructions can be performed either unconditionally or conditionally under a mask.

Vector loads and stores move bit patterns between vector register elements and memory. Vector
arithmetic instructions operate on values held in vector register elements.

32.5.1. Scalar Operands

Scalar operands can be immediates, or taken from the x registers, the f registers, or element O of a
vector register. Scalar results are written to an x or f register or to element © of a vector register. Any
vector register can be used to hold a scalar regardless of the current LMUL setting.

Zfinx ("F in X") is a new ISA extension where floating-point instructions take their

o arguments from the integer register file. The vector extension is also compatible with
Zfinx, where the Zfinx vector extension has vector-scalar floating-point instructions
taking their scalar argument from the x registers.

We considered but did not pursue overlaying the f registers on v registers. The
adopted approach reduces vector register pressure, avoids interactions with the
standard calling convention, simplifies high-performance scalar floating-point design,

6 and provides compatibility with the Zfinx ISA option. Overlaying f with v would
provide the advantage of lowering the number of state bits in some implementations,
but complicates high-performance designs and would prevent compatibility with the
Zfinx ISA option.

32.5.2. Vector Operands

Each vector operand has an effective element width (EEW) and an effective LMUL (EMUL) that is used
to determine the size and location of all the elements within a vector register group. By default, for
most operands of most instructions, EEW=SEW and EMUL=LMUL.

Some vector instructions have source and destination vector operands with the same number of
elements but different widths, so that EEW and EMUL differ from SEW and LMUL respectively but
EEW/EMUL = SEW/LMUL. For example, most widening arithmetic instructions have a source group
with EEW=SEW and EMUL=LMUL but have a destination group with EEW=2*SEW and EMUL=2*LMUL.
Narrowing instructions have a source operand that has EEW=2*SEW and EMUL=2*LMUL but with a
destination where EEW=SEW and EMUL=LMUL.

Vector operands or results may occupy one or more vector registers depending on EMUL, but are
always specified using the lowest-numbered vector register in the group. Using other than the lowest-
numbered vector register to specify a vector register group is a reserved encoding.

A vector register cannot be used to provide source operands with more than one EEW for a single
instruction. A mask register source is considered to have EEW=1 for this constraint. An encoding that

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.5. Vector Instruction Formats | Page 314

would result in the same vector register being read with two or more different EEWs, including when
the vector register appears at different positions within two or more vector register groups, is reserved.

In practice, there is no software benefit to reading the same register with different
6 EEW in the same instruction, and this constraint reduces complexity for
implementations that internally rearrange data dependent on EEW.

A destination vector register group can overlap a source vector register group only if one of the
following holds:

® The destination EEW equals the source EEW.

® The destination EEW is smaller than the source EEW and the overlap is in the lowest-numbered
part of the source register group (e.g., when LMUL=1, vnsrl.wi v8, vo, 3 is legal, but a destination
of v1 is not).

® The destination EEW is greater than the source EEW, the source EMUL is at least 1, and the overlap
is in the highest-numbered part of the destination register group (e.g., when LMUL=8, vzext.vf4 vo,
vé6 is legal, but a source of ve, v2, or v4 is not).

For the purpose of determining register group overlap constraints, mask elements have EEW=1.

o The overlap constraints are designed to support resumable exceptions in machines
without register renaming.

Any instruction encoding that violates the overlap constraints is reserved.

When source and destination registers overlap and have different EEW, the instruction is mask- and
tail-agnostic, regardless of the setting of the vta and vma bits in vtype.

The largest vector register group used by an instruction can not be greater than 8 vector registers (i.e.,
EMUL=8), and if a vector instruction would require greater than 8 vector registers in a group, the
instruction encoding is reserved. For example, a widening operation that produces a widened vector
register group result when LMUL=8 is reserved as this would imply a result EMUL=16.

Widened scalar values, e.g., input and output to a widening reduction operation, are held in the first
element of a vector register and have EMUL=1.
32.5.3. Vector Masking

Masking is supported on many vector instructions. Element operations that are masked off (inactive)
never generate exceptions. The destination vector register elements corresponding to masked-off
elements are handled with either a mask-undisturbed or mask-agnostic policy depending on the
setting of the vma bit in vtype (Section 32.3.4.3).

The mask value used to control execution of a masked vector instruction is always supplied by vector
register vo.

o Masks are held in vector registers, rather than in a separate mask register file, to
reduce total architectural state and to simplify the ISA.

o Future vector extensions may provide longer instruction encodings with space for a
full mask register specifier.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.5. Vector Instruction Formats | Page 315

The destination vector register group for a masked vector instruction cannot overlap the source mask
register (ve), unless the destination vector register is being written with a mask value (e.g., compares)
or the scalar result of a reduction. These instruction encodings are reserved.

o This constraint supports restart with a non-zero vstart value.

Other vector registers can be used to hold working mask values, and mask vector logical operations
are provided to perform predicate calculations.

As specified in Section 32.3.4.3, mask destination values are always treated as tail-agnostic,
regardless of the setting of vta.

32.5.3.1. Mask Encoding

Where available, masking is encoded in a single-bit vm field in the instruction (inst[251).

vm Description
] vector result, only where v@.mask[i] = 1

1 unmasked

Vector masking is represented in assembler code as another vector operand, with .t indicating that
the operation occurs when ve.mask[i] is 1 (t for "true"). If no masking operand is specified, unmasked
vector execution (vm=1) is assumed.

VOp.V* vl, v2, v3, vO0.t # enabled where vB.mask[i]=1, vm=0
VOop.V* vl, v2, v3 # unmasked vector operation, vm=1

Even though the current vector extensions only support one vector mask register ve
and only the true form of predication, the assembly syntax writes it out in full to be

o compatible with future extensions that might add a mask register specifier and
support both true and complement mask values. The .t suffix on the masking
operand also helps to visually encode the use of a mask.

o The .mask suffix is not part of the assembly syntax. We only append it in contexts
where a mask vector is subscripted, e.g., vo.mask[i].

32.5.4. Prestart, Active, Inactive, Body, and Tail Element Definitions

The destination element indices operated on during a vector instruction’s execution can be divided
into three disjoint subsets.

® The prestart elements are those whose element index is less than the initial value in the vstart
register. The prestart elements do not raise exceptions and do not update the destination vector
register.

® The body elements are those whose element index is greater than or equal to the initial value in
the vstart register, and less than the current vector length setting in vi. The body can be split into
two disjoint subsets:

® The active elements during a vector instruction’s execution are the elements within the body

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.6. Configuration-Setting Instructions (vsetvli/vsetivli/vsetvl) | Page 316

and where the current mask is enabled at that element position. The active elements can raise
exceptions and update the destination vector register group.

® The inactive elements are the elements within the body but where the current mask is disabled
at that element position. The inactive elements do not raise exceptions and do not update any
destination vector register group unless masked agnostic is specified (vtype.vma=1), in which
case inactive elements may be overwritten with 1s.

® The tail elements during a vector instruction’s execution are the elements past the current vector
length setting specified in vi. The tail elements do not raise exceptions, and do not update any
destination vector register group unless tail agnostic is specified (vtype.vta=1), in which case tail
elements may be overwritten with 1s, or with the result of the instruction in the case of mask-
producing instructions except for mask loads. When LMUL < 1, the tail includes the elements past
VLMAX that are held in the same vector register.

for element index X
prestart(x) = (0 <= x < vstart)

body(x) = (vstart <= x < vl)

tail(x) = (vl <= x < max(VLMAX,VLEN/SEW))
mask(x) = unmasked || vO.mask[x] ==
active(x) = body(x) && mask(x)

inactive(x) = body(x) && !mask(x)

When vstart = v, there are no body elements, and no elements are updated in any destination vector
register group, including that no tail elements are updated with agnostic values.

o As a consequence, when v1=0, no elements, including agnostic elements, are
updated in the destination vector register group regardless of vstart.

Instructions that write an x register or f register do so even when vstart = v1, including when v1=0.

Some instructions such as vslidedown and vrgather may read indices past vl or even
o VLMAX in source vector register groups. The general policy is to return the value ®
when the index is greater than VLMAX in the source vector register group.

32.6. Configuration-Setting Instructions (vsetvii/vsetivii/vsetvl)

One of the common approaches to handling a large number of elements is "stripmining" where each
iteration of a loop handles some number of elements, and the iterations continue until all elements
have been processed. The RISC-V vector specification provides direct, portable support for this
approach. The application specifies the total number of elements to be processed (the application
vector length or AVL) as a candidate value for vi, and the hardware responds via a general-purpose
register with the (frequently smaller) number of elements that the hardware will handle per iteration
(stored in v1), based on the microarchitectural implementation and the vtype setting. A straightforward
loop structure, shown in Section 32.6.4, depicts the ease with which the code keeps track of the
remaining number of elements and the amount per iteration handled by hardware.

A set of instructions is provided to allow rapid configuration of the values in vi and vtype to match
application needs. The vset{i}v1{i} instructions set the vtype and vi CSRs based on their arguments,
and write the new value of vl into rd.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.6. Configuration-Setting Instructions (vsetvli/vsetivli/vsetvl) | Page 317

new vl, rsl = AVL, vtypeli = new vtype setting
new vl, uimm = AVL, vtypei = new vtype

vsetvli rd, rsl, vtypei # rd
vsetivli rd, uvimm, vtypei # rd
setting

vsetvl rd, rsl, rs2 # rd = new vl, rsl = AVL, rs2 = new vtype value

Formats for Vector Configuration Instructions under OP-V major opcode

31 30 20 19 15 14 12 1 7 6]

] vtypei[10:0] rsi 1 1 1 rd 106 1.0 1 1 1
vsetvli

31 30 29 20 19 15 14 12 N1 7 6]

1 (1 vitypei[9:0] uimm[4:0] 1 1 1 rd 1 06 1.0 1 1 1
vsetivli

31 30 25 24 20 19 15 14 12 N1 7 6]

1(/06 8 0 0 O O rs2 rsi 1 1 1 rd 1 06 1.0 1 1 1
vsetvl

32.6.1. vtype encoding

31 30 8 7 6 5 3 2 0

vill reserved vmalvta | vsew[2:0] | vimul[2:0]

o This diagram shows the layout for RV32 systems, whereas in general vill should be
at bit XLEN-1.

Table 50. vtype register layout

Bits Name Description
XLEN-1 vill Illegal value if set
XLEN-2:8 © Reserved if non-zero
7 vma Vector mask agnostic
6 vta Vector tail agnostic

5:3 vsew[2:0] Selected element width (SEW) setting

2:0 vimul[2:0] Vector register group multiplier (LMUL) setting

The new vtype value is encoded in the immediate fields of vsetvli and vsetivli, and in the rs2 register
for vsetvl.

Suggested assembler names used for vset{i}vli vtypei immediate

e8 # SEW=8b
el6é # SEW=16b
e32 # SEW=32b
e64 # SEW=64Db

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.6. Configuration-Setting Instructions (vsetvli/vsetivli/vsetvl) | Page 318

mf8 # LMUL=1/8

mf4 # LMUL=1/4

mf2 # LMUL=1/2

ml # LMUL=1

m2 # LMUL=2

ma # LMUL=4

m8 # LMUL=8

Examples:
vsetvli t0, a0, e8, ml, ta, ma # SEW= 8, LMUL=1
vsetvli t0O, a0, e8, m2, ta, ma # SEW= 8, LMUL=2

vsetvli t0, a0, e32, mf2, ta, ma # SEW=32, LMUL=1/2

The vsetvl variant operates similarly to vsetvli except that it takes a vtype value from rs2 and can be
used for context restore.

32.6.1.1. Unsupported vtype Values

If the vtype value is not supported by the implementation, then the vill bit is set in vtype, the
remaining bits in vtype are set to zero, and the v1 register is also set to zero.

Earlier drafts required a trap when setting vtype to an illegal value. However, this
would have added the first data-dependent trap on a CSR write to the ISA.
o Implementations could choose to trap when illegal values are written to vtype instead
of setting vill, to allow emulation to support new configurations for forward-
compatibility. The current scheme supports light-weight runtime interrogation of the
supported vector unit configurations by checking if vill is clear for a given setting.

A vtype value with vill set is treated as an unsupported configuration.

Implementations must consider all bits of the vtype value to determine if the configuration is
supported. An unsupported value in any location within the vtype value must result in vill being set.

In particular, all XLEN bits of the register vtype argument to the vsetvl instruction

e must be checked. Implementations cannot ignore fields they do not implement. All
bits must be checked to ensure that new code assuming unsupported vector features
in vtype traps instead of executing incorrectly on an older implementation.

32.6.2. AVL encoding

The new vector length setting is based on AVL, which for vsetvli and vsetvl is encoded in the rs1 and
rd fields as follows:

Table 51. AVL used in vsetvli and vsetvl instructions

rd rsl AVL value Effect on vl
- IX®@ Value in x[rs1] Normal stripmining
IX@ x@ ~0 Set vl to VLMAX

x® xO Valuein vlregister Keep existing vl (of course, vtype may change)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.6. Configuration-Setting Instructions (vsetvli/vsetivli/vsetvl) | Page 319

When rs7 is not x@, the AVL is an unsigned integer held in the x register specified by rs7, and the new
vl value is also written to the x register specified by rd.

When rs7=x6 but rd=xe, the maximum unsigned integer value (~8) is used as the AVL, and the resulting
VLMAX is written to vl and also to the x register specified by rd.

When rs1=x0 and rd=xg, the instruction operates as if the current vector length in vi is used as the AVL,
and the resulting value is written to vi, but not to a destination register. This form can only be used
when VLMAX and hence v1 is not actually changed by the new SEW/LMUL ratio. Use of the instruction
with a new SEW/LMUL ratio that would result in a change of VLMAX is reserved. Use of the instruction
is also reserved if vill was 1 beforehand. Implementations may set vill in either case.

This last form of the instructions allows the vtype register to be changed while
maintaining the current v1, provided VLMAX is not reduced. This design was chosen
to ensure vl would always hold a legal value for current vtype setting. The current vi

o value can be read from the vi CSR. The vl value could be reduced by this instruction
if the new SEW/LMUL ratio causes VLMAX to shrink, and so this case has been
reserved as it is not clear this is a generally useful operation, and implementations
can otherwise assume vl is not changed by this instruction to optimize their
microarchitecture.

For the vsetivli instruction, the AVL is encoded as a 5-bit zero-extended immediate (8—31) in the rs1
field.

o The encoding of AVL for vsetivli is the same as for regular CSR immediate values.

The vsetivli instruction provides more compact code when the dimensions of
o vectors are small and known to fit inside the vector registers, in which case there is
no stripmining overhead.

32.6.3. Constraints on Setting vi

The vset{i}vl{i} instructions first set VLMAX according to their vtype argument, then set vi obeying
the following constraints:
1. vl = AVL if AVL < VLMAX
2. ceil(AVL / 2) < vl < VLMAX if AVL < (2 % VLMAX)
3. vl = VLMAX if AVL 2 (2 * VLMAX)
4. Deterministic on any given implementation for same input AVL and VLMAX values
5. These specific properties follow from the prior rules:
a.vi=o0ifavL =0
b.vi > gifavL > 0
C. vl £ VLMAX
d. vl < AVL
e. a value read from vl when used as the AVL argument to vset{i}v1{i} results in the same value

in v1, provided the resultant VLMAX equals the value of VLMAX at the time that v1 was read

o The v setting rules are designed to be sufficiently strict to preserve vl behavior

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 320

across register spills and context swaps for AVL < VLMAX, yet flexible enough to enable
implementations to improve vector lane utilization for AVL > VLMAX.

For example, this permits an implementation to set vl = ceil(AVL / 2) for VLMAX < AVL
< 2%VLMAX in order to evenly distribute work over the last two iterations of a stripmine
loop. Requirement 2 ensures that the first stripmine iteration of reduction loops uses
the largest vector length of all iterations, even in the case of AVL < 2xVLMAX. This
allows software to avoid needing to explicitly calculate a running maximum of vector
lengths observed during a stripmined loop. Requirement 2 also allows an
implementation to set vl to VLMAX for VLMAX < AVL < 2%VLMAX

32.6.4. Example of stripmining and changes to SEW

The SEW and LMUL settings can be changed dynamically to provide high throughput on mixed-width
operations in a single loop.

Example: Load 16-bit values, widen multiply to 32b, shift 32b result
right by 3, store 32b valvues.

On entry:

a0 holds the total number of elements to process

al holds the address of the source array

a2 holds the address of the destination array

loop:

vsetvli a3, a0, elé, m4, ta, ma # vtype = 16-bit integer vectors;
also update a3 with vl (# of elements
this iteration)

vlielé.v v4, (al) # Get 16b vector

s1li t1, a3, 1 # Multiply # elements this iteration by 2
bytes/source element

add al, al, ti # Bump pointer

vwmul.vx v8, v4, x10 # Widening multiply into 32b in <v8--v15>

vsetvli x0, x0, e32, m8, ta, ma # Operate on 32b values
vsrl.vi v8, v8, 3

vse32.v v8, (a2) # Store vector of 32b elements

s1li t1, a3, 2 # Multiply # elements this iteration by 4
bytes/destination element

add a2, a2, t1 # Bump pointer

sub a0, al, a3 # Decrement count by vl

bnez a0, loop # Any more?

32.7. Vector Loads and Stores

Vector loads and stores move values between vector registers and memory. Vector loads and stores
can be masked, and they only access memory or raise exceptions for active elements. Masked vector
loads do not update inactive elements in the destination vector register group, unless masked
agnostic is specified (vtype.vma=1). All vector loads and stores may generate and accept a non-zero
vstart value.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 321

32.7.1. Vector Load/Store Instruction Encoding

Vector loads and stores are encoded within the scalar floating-point load and store major opcodes
(LOAD-FP/STORE-FP). The vector load and store encodings repurpose a portion of the standard scalar
floating-point load/store 12-bit immediate field to provide further vector instruction encoding, with bit
25 holding the standard vector mask bit (see Section 32.5.3.1).

Format for Vector Load Instructions under LOAD-FP major opcode

31 29 28 27 26 25 24 20 19 15 14 12 1 7
nf mew mop [vm lumop rs1 width vd O 0 0 0 1 1
base address destination of load VL* unit-stride
31 29 28 27 26 25 24 20 19 15 14 12 1 7
nf mew mop |vm rs2 rsi width vd O ®© 0 0 1 1
stride base address destination of load VLS* strided
31 29 28 27 26 25 24 20 19 15 14 12 1 7 6
nf mew mop |vm vs2 rsi width vd O © 0 0 1 1

address offsets

base address

destination of load

Format for Vector Store Instructions under STORE-FP major opcode

VLX* indexed

31 29 28 27 26 25 24 20 19 15 14 12 1 7

nf mew mop (vm sumop rs1 width vs3 e 1.0 0 1 1

base address store data VS* unit-stride

31 29 28 27 26 25 24 20 19 15 14 12 1 7

nf mew mop |vm rs2 rsi width vs3 e 1. 0 0 1 1

stride base address store data VSS* strided

31 29 28 27 26 25 24 20 19 15 14 12 1 7 6

nf mew mop |vm vs2 rsi width vs3 ® 1. 0 0 1 1

address offsets base address store data VSX* indexed

Field Description
rs1[4:0] specifies x register holding base address
rs2[4:0] specifies x register holding stride
vs2[4:0] specifies v register holding address offsets
vs3[4:0] specifies v register holding store data
vd[4:0] specifies v register destination of load
vm specifies whether vector masking is enabled (® = mask enabled, 1 = mask disabled)
width[2:0] specifies size of memory elements, and distinguishes from FP scalar
mew extended memory element width. See Section 32.7.3
mop[1:0] specifies memory addressing mode
nf[2:0] specifies the number of fields in each segment, for segment load/stores
lumop[4:0]/sumop[4:0] are additional fields encoding variants of unit-stride instructions

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 322

Vector memory unit-stride and constant-stride operations directly encode EEW of the data to be
transferred statically in the instruction to reduce the number of vtype changes when accessing memory
in a mixed-width routine. Indexed operations use the explicit EEW encoding in the instruction to set
the size of the indices used, and use SEW/LMUL to specify the data width.

32.7.2. Vector Load/Store Addressing Modes

The vector extension supports unit-stride, strided, and indexed (scatter/gather) addressing modes.
Vector load/store base registers and strides are taken from the GPR x registers.

The base effective address for all vector accesses is given by the contents of the x register named in

rsl.

Vector unit-stride operations access elements stored contiguously in memory starting from the base
effective address.

Vector constant-strided operations access the first memory element at the base effective address, and
then access subsequent elements at address increments given by the byte offset contained in the x
register specified by rs2.

Vector indexed operations add the contents of each element of the vector offset operand specified by
vs2 to the base effective address to give the effective address of each element. The data vector
register group has EEW=SEW, EMUL=LMUL, while the offset vector register group has EEW encoded in
the instruction and EMUL=(EEW/SEW)*LMUL.

The vector offset operand is treated as a vector of byte-address offsets.

The indexed operations can also be used to access fields within a vector of objects,
where the vs2 vector holds pointers to the base of the objects and the scalar x

o register holds the offset of the member field in each object. Supporting this case is
why the indexed operations were not defined to scale the element indices by the data
EEW.

If the vector offset elements are narrower than XLEN, they are zero-extended to XLEN before adding to
the base effective address. If the vector offset elements are wider than XLEN, the least-significant
XLEN bits are used in the address calculation. An implementation must raise an illegal instruction
exception if the EEW is not supported for offset elements.

o A profile may place an upper limit on the maximum supported index EEW (e.g., only
up to XLEN) smaller than ELEN.

The vector addressing modes are encoded using the 2-bit mop[1:6] field.

Table 52. encoding for loads

mop [1:0] Description Opcodes

)) unit-stride VLE<EEW>

) 1 indexed-unordered VLUXEI<EEW>
1 0 strided VLSE<EEW>

1 1 indexed-ordered VLOXEI<EEW>

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 323

Table 53. encoding for stores

mop [1:0] Description Opcodes

) 0 unit-stride VSE<EEW>

) 1 indexed-unordered VSUXEI<EEW>
1 0 strided VSSE<EEW>

1 1 indexed-ordered VSOXEI<EEW>

Vector unit-stride and constant-stride memory accesses do not guarantee ordering between individual
element accesses. The vector indexed load and store memory operations have two forms, ordered and
unordered. The indexed-ordered variants preserve element ordering on memory accesses.

For unordered instructions (mop[1:6]!=11) there is no guarantee on element access order. If the
accesses are to a strongly ordered IO region, the element accesses can be initiated in any order.

o To provide ordered vector accesses to a strongly ordered IO region, the ordered
indexed instructions should be used.

For implementations with precise vector traps, exceptions on indexed-unordered stores must also be
precise.

Additional unit-stride vector addressing modes are encoded using the 5-bit tumop and sumop fields in
the unit-stride load and store instruction encodings respectively.

Table 54. lumop

lumop[4:0] Description

)))) o unit-stride load

o 1 o)) unit-stride, whole register load
o 1 o 1 1 unit-stride, mask load, EEW=8
1]] o] unit-stride fault-only-first

X X X X X other encodings reserved

Table 55. sumop

sumop[4:0] Description

))) 0 0 unit-stride store

o 1 o o o unit-stride, whole register store
] 1] 1 1 unit-stride, mask store, EEW=8
X X X X X other encodings reserved

The nf[2:0] field encodes the number of fields in each segment. For regular vector loads and stores,
nf=0, indicating that a single value is moved between a vector register group and memory at each
element position. Larger values in the nf field are used to access multiple contiguous fields within a
segment as described below in Section 32.7.8.

The nf[2:0] field also encodes the number of whole vector registers to transfer for the whole vector
register load/store instructions.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 324
32.7.3. Vector Load/Store Width Encoding

Vector loads and stores have an EEW encoded directly in the instruction. The corresponding EMUL is
calculated as EMUL = (EEW/SEW)*LMUL. If the EMUL would be out of range (EMUL>8 or EMUL<1/8),
the instruction encoding is reserved. The vector register groups must have legal register specifiers for
the selected EMUL, otherwise the instruction encoding is reserved.

Vector unit-stride and constant-stride use the EEW/EMUL encoded in the instruction for the data
values, while vector indexed loads and stores use the EEW/EMUL encoded in the instruction for the
index values and the SEW/LMUL encoded in vtype for the data values.

Vector loads and stores are encoded using width values that are not claimed by the standard scalar
floating-point loads and stores.

Implementations must provide vector loads and stores with EEWs corresponding to all supported SEW
settings. Vector load/store encodings for unsupported EEW widths must raise an illegal instruction
exception.

Table 56. Width encoding for vector loads and stores.

me width [2:0] Mem bits Data Reg bits Index bits Opcodes
w

Standard scalar FP X]] 1 16 FLEN - FLH/FSH

Standard scalar FP X] 1] 32 FLEN - FLW/FSW

Standard scalar FP X Y 1 1 64 FLEN - FLD/FSD

Standard scalar FP X 1 o] 128 FLEN - FLQ/FSQ

Vector 8b element Y))) 8 8 - VLXE8/VSxE8

Vector 16b element] 1] 1 16 16 - VLXE16/VSXxE1
6

Vector 32b element] 1 1] 32 32 - VLXE32/VSxE3
2

Vector 64b element Y 1 1 1 64 64 - VLXE64/VSXE6
4

Vector 8b index]]]] SEW SEW 8 VLXEI8/VSxEI
8

Vector 16b index] 1] 1 SEW SEW 16 VLXEI16/VSxEI
16

Vector 32b index] 1 1] SEW SEW 32 VLXEI32/VSxE
132

Vector 64b index] 1 1 1 SEW SEW 64 VLXEI64/VSXE
164

Reserved 1 X X X - - -

Mem bits is the size of each element accessed in memory.
Data reg bits is the size of each data element accessed in register.

Index bits is the size of each index accessed in register.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 325

The mew bit (inst[28]) when set is expected to be used to encode expanded memory sizes of 128 bits
and above, but these encodings are currently reserved.

32.7.4. Vector Unit-Stride Instructions

Vector unit-stride loads and stores

vd destination, rsl base address, vm is mask encoding (v0.t or <missing>)
vlie8.v vd, (rs1), vm # 8-bit unit-stride load
vielé.v vd, (rs1l), vm # 16-bit unit-stride load
vie32.v vd, (rs1l), vm # 32-bit unit-stride load
vieé4d.v vd, (rs1l), vm # 64-bit unit-stride load

vs3 store data, rsl base address, vm is mask encoding (vO0.t or <missing>)
vse8.v vs3, (rsl), vm # 8-bit unit-stride store
vselé.v vs3, (rsl), vm # 16-bit unit-stride store
vse32.v vs3, (rsl1), vm # 32-bit unit-stride store
vseb4d.v vs3, (rsl), vm # 64-bit unit-stride store

Additional unit-stride mask load and store instructions are provided to transfer mask values to/from
memory. These operate similarly to unmasked byte loads or stores (EEW=8), except that the effective
vector length is evi=ceil(v1/8) (i.e. EMUL=1), and the destination register is always written with a tail-
agnostic policy.

Vector unit-stride mask load
vim.v vd, (rsl1l) # Load byte vector of length ceil(vl/8)

Vector unit-stride mask store
vsm.v vs3, (rsl) # Store byte vector of length ceil(vl/8)

vim.v and vsm.v are encoded with the same width[2:0]1=0 encoding as vle8.v and vse8.v, but are
distinguished by different tumop and sumop encodings. Since vim.v and vsm.v operate as byte loads and
stores, vstart is in units of bytes for these instructions.

0 vim.v and vsm.v respect the vill field in vtype, as they depend on vtype indirectly
through its constraints on vl.

The previous assembler mnemonics viel.v and vsel.v were confusing as length was

o handled differently for these instructions versus other element load/store
instructions. To avoid software churn, these older assembly mnemonics are being
retained as aliases.

The primary motivation to provide mask load and store is to support machines that
internally rearrange data to reduce cross-datapath wiring. However, these

o instructions also provide a convenient mechanism to use packed bit vectors in
memory as mask values, and also reduce the cost of mask spill/fill by reducing need
to change v

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 326

32.7.5. Vector Strided Instructions

Vector strided loads and stores

vd destination, rsl base address, rs2 byte stride

vlse8.v vd, (rsl1), rs2, vm # 8-bit strided load
vlselé.v vd, (rsl), rs2, vm # 16-bit strided load
vlse32.v vd, (rsl), rs2, vm # 32-bit strided load
vliseé4.v vd, (rsl), rs2, vm # 64-bit strided load

vs3 store data, rsl base address, rs2 byte stride

vsse8.v vs3, (rsl1), rs2, vm # 8-bit strided store
vsselé.v vs3, (rsl), rs2, vm # 16-bit strided store
vsse32.v vs3, (rsl), rs2, vm # 32-bit strided store
vsseb4.v vs3, (rsl), rs2, vm # 64-bit strided store

Negative and zero strides are supported.
Element accesses within a strided instruction are unordered with respect to each other.

When rs2=x08, then an implementation is allowed, but not required, to perform fewer memory
operations than the number of active elements, and may perform different numbers of memory
operations across different dynamic executions of the same static instruction.

o Compilers must be aware to not use the xe6 form for rs2 when the immediate stride is
0 if the intent is to require all memory accesses are performed.

When rs21=x6 and the value of x[rs21=06, the implementation must perform one memory access for each
active element (but these accesses will not be ordered).

As with other architectural mandates, implementations must appear to perform each
memory access. Microarchitectures are free to optimize away accesses that would

e not be observed by another agent, for example, in idempotent memory regions
obeying RVWMO. For non-idempotent memory regions, where by definition each
access can be observed by a device, the optimization would not be possible.

0 When repeating ordered vector accesses to the same memory address are required,
then an ordered indexed operation can be used.

32.7.6. Vector Indexed Instructions

Vector indexed loads and stores

Vector indexed-unordered load instructions

vd destination, rsl base address, vs2 byte offsets

vliuxei8.v vd, (rs1), vs2, vm # unordered 8-bit indexed load of SEW data
vliuxeilé.v vd, (rsl1l), vs2, vm # unordered 16-bit indexed load of SEW data
vluxei32.v vd, (rs1), vs2, vm # unordered 32-bit indexed load of SEW data
vluxeib4a.v vd, (rsl), vs2, vm # unordered 64-bit indexed load of SEW data

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 327

Vector indexed-ordered load instructions

vd destination, rsl base address, vs2 byte offsets

vlioxei8.v vd, (rs1), vs2, vm # ordered 8-bit indexed load of SEW data
vloxeilé.v vd, (rsl), vs2, vm # ordered 16-bit indexed load of SEW data
vlioxei32.v vd, (rsl), vs2, vm # ordered 32-bit indexed load of SEW data
vloxeib4.v vd, (rsl), vs2, vm # ordered 64-bit indexed load of SEW data

Vector indexed-unordered store instructions

vs3 store data, rsl base address, vs2 byte offsets

vsuxei8.v vs3, (rsl1l), vs2, vm # unordered 8-bit indexed store of SEW data
vsuxeilé.v vs3, (rsl), vs2, vm # unordered 16-bit indexed store of SEW data
vsuxei32.v vs3, (rsl), vs2, vm # unordered 32-bit indexed store of SEW data
vsuxeib4.v vs3, (rsl), vs2, vm # unordered 64-bit indexed store of SEW data

Vector indexed-ordered store instructions

vs3 store data, rsl base address, vs2 byte offsets

vsoxei8.v vs3, (rsl1), vs2, vm # ordered 8-bit indexed store of SEW data
vsoxeilbé.v vs3, (rsl), vs2, vm # ordered 16-bit indexed store of SEW data
vsoxei32.v vs3, (rsl), vs2, vm # ordered 32-bit indexed store of SEW data
vsoxeié4.v vs3, (rsl), vs2, vm # ordered 64-bit indexed store of SEW data

o The assembler syntax for indexed loads and stores uses eix instead of ex to indicate
the statically encoded EEW is of the index not the data.

The indexed operations mnemonics have a "U" or "O" to distinguish between
unordered and ordered, while the other vector addressing modes have no character.

o While this is perhaps a little less consistent, this approach minimizes disruption to
existing software, as VSXEI previously meant "ordered" - and the opcode can be
retained as an alias during transition to help reduce software churn.

32.7.7. Unit-stride Fault-Only-First Loads

The unit-stride fault-only-first load instructions are used to vectorize loops with data-dependent exit
conditions ("while" loops). These instructions execute as a regular load except that they will only take a
trap caused by a synchronous exception on element 0. If element O raises an exception, vl is not
modified, and the trap is taken. If an element > © raises an exception, the corresponding trap is not
taken, and the vector length vt is reduced to the index of the element that would have raised an
exception.

Load instructions may overwrite active destination vector register group elements past the element
index at which the trap is reported. Similarly, fault-only-first load instructions may update active
destination elements past the element that causes trimming of the vector length (but not past the
original vector length). The values of these spurious updates do not have to correspond to the values in
memory at the addressed memory locations. Non-idempotent memory locations can only be accessed
when it is known the corresponding element load operation will not be restarted due to a trap or
vector-length trimming.

Vector unit-stride fault-only-first loads

vd destination, rsl base address, vm is mask encoding (vO0.t or <missing>)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 328

vie8ff.v vd, (rs1), vm
vlieléff.v vd, (rsl), vm
vie32ff.v vd, (rsl), vm
vlieés4ff.v vd, (rsl), vm

8-bit unit-stride fault-only-first load
16-bit unit-stride fault-only-first load
32-bit unit-stride fault-only-first load
64-bit unit-stride fault-only-first load

H OH B H

strlen example using unit-stride fault-only-first instruction

size_t strlen(const char *xstr)
a0 holds *str

strlen:
mv a3, a0 # Save start
loop:
vsetvli al, x0, e8, m8, ta, ma # Vector of bytes of maximum length
vie8ff.v v8, (a3) # Load bytes
csrr al, vl # Get bytes read
vmseq.vi vO, v8, O # Set vO[i] where v8[i] = O
vfirst.m a2, vO # Find first set bit
add a3, a3, al # Bump pointer
bltz a2, loop # Not found?
add a0, a0, al # Sum start + bump
add a3, a3, a2 # Add index
sub a0, a3, a0 # Subtract start address+bump
ret

There is a security concern with fault-on-first loads, as they can be used to probe for
valid effective addresses. The unit-stride versions only allow probing a region
immediately contiguous to a known region, and so reduce the security impact when
used in unprivileged code. However, code running in S-mode can establish arbitrary

e page translations that allow probing of random guest physical addresses provided by
a hypervisor. Strided and scatter/gather fault-only-first instructions are not provided
due to lack of encoding space, but they can also represent a larger security hole,
allowing even unprivileged software to easily check multiple random pages for
accessibility without experiencing a trap. This standard does not address possible
security mitigations for fault-only-first instructions.

Even when an exception is not raised, implementations are permitted to process fewer than vt
elements and reduce vi accordingly, but if vstart=0 and v1>0, then at least one element must be
processed.

When the fault-only-first instruction takes a trap due to an interrupt, implementations should not
reduce v1 and should instead set a vstart value.

When the fault-only-first instruction would trigger a debug data-watchpoint trap on an
element after the first, implementations should not reduce vl but instead should
trigger the debug trap as otherwise the event might be lost.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 329

32.7.8. Vector Load/Store Segment Instructions

The vector load/store segment instructions move multiple contiguous fields in memory to and from
consecutively numbered vector registers.

The name "segment" reflects that the items moved are subarrays with homogeneous

o elements. These operations can be used to transpose arrays between memory and
registers, and can support operations on "array-of-structures" datatypes by unpacking
each field in a structure into a separate vector register.

The three-bit nf field in the vector instruction encoding is an unsigned integer that contains one less
than the number of fields per segment, NFIELDS.

Table 57. NFIELDS Encoding
nf[2:0] NFIELDS

0) 1 2
0 1 0 3
) 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7

The EMUL setting must be such that EMUL * NFIELDS = 8, otherwise the instruction encoding is
reserved.

The product ceilEMUL) * NFIELDS represents the number of underlying vector

0 registers that will be touched by a segmented load or store instruction. This
constraint makes this total no larger than 1/4 of the architectural register file, and the
same as for regular operations with EMUL=8.

Each field will be held in successively numbered vector register groups. When EMUL>1, each field will
occupy a vector register group held in multiple successively numbered vector registers, and the vector
register group for each field must follow the usual vector register alignment constraints (e.g., when
EMUL=2 and NFIELDS=4, each field’s vector register group must start at an even vector register, but
does not have to start at a multiple of 8 vector register number).

If the vector register numbers accessed by the segment load or store would increment past 31, then
the instruction encoding is reserved.

6 This constraint is to help allow for forward-compatibility with a possible future longer
instruction encoding that has more addressable vector registers.

The v1i register gives the number of segments to move, which is equal to the number of elements
transferred to each vector register group. Masking is also applied at the level of whole segments.

For segment loads and stores, the individual memory accesses used to access fields within each
segment are unordered with respect to each other even for ordered indexed segment loads and stores.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 330

The vstart value is in units of whole segments. If a trap occurs during access to a segment, it is
implementation-defined whether a subset of the faulting segment’s accesses are performed before the
trap is taken.

32.7.8.1. Vector Unit-Stride Segment Loads and Stores

The vector unit-stride load and store segment instructions move packed contiguous segments into
multiple destination vector register groups.

Where the segments hold structures with heterogeneous-sized fields, software can
o later unpack individual structure fields using additional instructions after the
segment load brings data into the vector registers.

The assembler prefixes viseg/vsseg are used for unit-stride segment loads and stores respectively.

Format

vlseg<nf>e<eew>.v vd, (rsl), vm # Unit-stride segment load template
vsseg<nf>e<eew>.v vs3, (rsl), vm # Unit-stride segment store template
Examples

vlseg8e8.v vd, (rsl), vm # Load eight vector registers with eight byte
fields.

vsseg3e32.v vs3, (rsl), vm # Store packed vector of 3*4-byte segments from
vs3,vs3+1l,vs3+2 to memory

For loads, the vd register will hold the first field loaded from the segment. For stores, the vs3 register is
read to provide the first field to be stored to each segment.

Example 1

Memory structure holds packed RGB pixels (24-bit data structure, 8bpp)
vsetvli al, t0, e8, ml, ta, ma

vlseg3e8.v v8, (aB), vm

v8 holds the red pixels

v9 holds the green pixels

v10 holds the blue pixels

Example 2

Memory structure holds complex values, 32b for real and 32b for imaginary
vsetvli al, t0, e32, ml, ta, ma

vlseg2e32.v v8, (aB), vm

v8 holds real

v9 holds imaginary

There are also fault-only-first versions of the unit-stride instructions.

Template for vector fault-only-first unit-stride segment loads.
vlseg<nf>e<eew>ff.v vd, (rsl), vm # Unit-stride fault-only-first segment

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 331

loads

For fault-only-first segment loads, if an exception is detected partway through accessing a segment,
regardless of whether the element index is zero, it is implementation-defined whether a subset of the
segment is loaded.

These instructions may overwrite destination vector register group elements past the point at which a
trap is reported or past the point at which vector length is trimmed.
32.7.8.2. Vector Strided Segment Loads and Stores

Vector strided segment loads and stores move contiguous segments where each segment is separated
by the byte-stride offset given in the rs2 GPR argument.

o Negative and zero strides are supported.
Format
vlsseg<nf>e<eew>.v vd, (rsl), rs2, vm # Strided segment loads
vssseg<nf>e<eew>.v vs3, (rsl), rs2, vm # Strided segment stores
Examples

vsetvli al, t0, e8, ml, ta, ma

vlisseg3e8.v v4, (x5), x6 # Load bytes at addresses x5+i*x6 into v4[il],
and bytes at addresses x5+i*x6+1 into v5[i],
and bytes at addresses x5+i*x6+2 into vé6[il].

Examples

vsetvli al, t0, e32, ml, ta, ma

vssseg2e32.v v2, (x5), x6 # Store words from v2[i] to address x5+i*xé
and words from v3[i] to address x5+i*x6+4

Accesses to the fields within each segment can occur in any order, including the case where the byte
stride is such that segments overlap in memory.

32.7.8.3. Vector Indexed Segment Loads and Stores

Vector indexed segment loads and stores move contiguous segments where each segment is located
at an address given by adding the scalar base address in the rsi field to byte offsets in vector register
vs2. Both ordered and unordered forms are provided, where the ordered forms access segments in
element order. However, even for the ordered form, accesses to the fields within an individual segment
are not ordered with respect to each other.

The data vector register group has EEW=SEW, EMUL=LMUL, while the index vector register group has
EEW encoded in the instruction with EMUL=(EEW/SEW)*LMUL. The EMUL * NFIELDS < 8 constraint
applies to the data vector register group.

Format
vluxseg<nf>ei<eew>.v vd, (rsl), vs2, vm # Indexed-unordered segment loads

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 332

vloxseg<nf>ei<eew>.v vd, (rsl1), vs2, vm # Indexed-ordered segment loads
vsuxseg<nf>ei<eew>.v vs3, (rsl), vs2, vm # Indexed-unordered segment stores
vsoxseg<nf>ei<eew>.v vs3, (rsl), vs2, vm # Indexed-ordered segment stores

Examples
vsetvli al, t0, e8, ml, ta, ma
vluxseg3ei8.v v4, (x5), v3 # Load bytes at addresses x5+v3[i] into v4[il],
and bytes at addresses x5+v3[i]+1 into
v5[i],
and bytes at addresses x5+v3[i]+2 into
v6[i].

Examples
vsetvli al, t0, e32, ml, ta, ma
vsuxseg2ei32.v v2, (x5), v5 # Store words from v2[i] to address x5+v5[i]
and words from v3[i] to address x5+v5[i]+4

For vector indexed segment loads, the destination vector register groups cannot overlap the source
vector register group (specified by vs2), else the instruction encoding is reserved.

o This constraint supports restart of indexed segment loads that raise exceptions
partway through loading a structure.
32.7.9. Vector Load/Store Whole Register Instructions

Format for Vector Load Whole Register Instructions under LOAD-FP major opcode

31 29 28 27 26 25 24 20 19 15 14 12 1 7 6]
nf mew ® 0|10 1T 08 08 O rsi width vd e 0 0 0 1 1 1
mop vm lumop base address destination of load VL*R*

Format for Vector Store Whole Register Instructions under STORE-FP major opcode

31 29 28 27 26 25 24 20 19 15 14 12 1 7 6]
nf O(® 0|10 1T 06 O © rsi 0 0 O vs3 e 1. 0 ® 1 1 1
mew mop vm sumop base address store data VS*R*

These instructions load and store whole vector register groups.

These instructions are intended to be used to save and restore vector registers when
the type or length of the current contents of the vector register is not known, or

o where modifying vl and vtype would be costly. Examples include compiler register
spills, vector function calls where values are passed in vector registers, interrupt
handlers, and OS context switches. Software can determine the number of bytes
transferred by reading the vlenb register.

The load instructions have an EEW encoded in the mew and width fields following the pattern of regular
unit-stride loads.

Because in-register byte layouts are identical to in-memory byte layouts, the same
o data is written to the destination register group regardless of EEW. Hence, it would

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.7. Vector Loads and Stores | Page 333

have sufficed to provide only EEW=8 variants. The full set of EEW variants is provided
so that the encoded EEW can be used as a hint to indicate the destination register
group will next be accessed with this EEW, which aids implementations that
rearrange data internally.

The vector whole register store instructions are encoded similar to unmasked unit-stride store of
elements with EEW=8.

The nf field encodes how many vector registers to load and store using the NFIELDS encoding (Figure
Table 57). The encoded number of registers must be a power of 2 and the vector register numbers
must be aligned as with a vector register group, otherwise the instruction encoding is reserved.
NFIELDS indicates the number of vector registers to transfer, numbered successively after the base.
Only NFIELDS values of 1, 2, 4, 8 are supported, with other values reserved. When multiple registers are
transferred, the lowest-numbered vector register is held in the lowest-numbered memory addresses
and successive vector register numbers are placed contiguously in memory.

The instructions operate with an effective vector length, evi=NFIELDS*VLEN/EEW, regardless of
current settings in vtype and vi. The usual property that no elements are written if vstart = v1 does not
apply to these instructions. Instead, no elements are written if vstart = evl.

The instructions operate similarly to unmasked unit-stride load and store instructions, with the base
address passed in the scalar x register specified by rsi.

Implementations are allowed to raise a misaligned address exception on whole register loads and
stores if the base address is not naturally aligned to the larger of the size of the encoded EEW in bytes
(EEW/8) or the implementation’s smallest supported SEW size in bytes (SEWn/8).

Allowing misaligned exceptions to be raised based on non-alignment to the encoded
EEW simplifies the implementation of these instructions. Some subset
implementations might not support smaller SEW widths, so are allowed to report

o misaligned exceptions for the smallest supported SEW even if larger than encoded
EEW. An extreme non-standard implementation might have SEW,,>XLEN for
example. Software environments can mandate the minimum alignment requirements
to support an ABL.

Format of whole register load and store instructions.
vllr.v v3, (a0) # Pseudoinstruction equal to vllre8.v

vllre8.v v3, (aB) # Load v3 with VLEN/8 bytes held at address in a0
vllrelé.v v3, (aB) # Load v3 with VLEN/16 halfwords held at address in a0
vllre32.v v3, (aB) # Load v3 with VLEN/32 words held at address in a@
vllreb4.v v3, (aB) # Load v3 with VLEN/64 doublewords held at address in a0@

vi2r.v v2, (a0) # Pseudoinstruction equal to v12re8.v

vl2re8.v v2, (aB@) # Load v2-v3 with 2*VLEN/8 bytes from address in a0
vl2relé.v v2, (aB@) # Load v2-v3 with 2%VLEN/16 halfwords held at address in
ao

vi2re32.v v2, (aB) # Load v2-v3 with 2%VLEN/32 words held at address in a0
vl2reb4.v v2, (aB) # Load v2-v3 with 2%VLEN/64 doublewords held at address
in a0

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.8. Vector Memory Alignment Constraints | Page 334

vl4r.v

vl4re8.

va,

Vv

vl4reléb.v
vl4re32.v
vl4reb4.v

v1l8r.v

v1l8re8.

v8,

Vv

v18relb.v
v18re32.v
v18reb4.v

vslr.
vs2r.
vVsar.
vs8r.

< < < <

V3,
V2,
V4,
v8,

(ad)

V4,
V4,
V4,
V4,

(ad)

v8,
v8,
v8,
v8,

(a1)
(a1)
(al)
(al)

(ad)
(ad)
(ad)
(ad)

(ad)
(ad)
(ad)
(ad)

Pseudoinstruction equal to vl4re8.v

Load

v4-v7 with 4%VLEN/8 bytes from address in a0

Pseudoinstruction equal to v18re8.v

Load

Store
Store
Store
Store

v8-v15 with 8%VLEN/8 bytes from address in a0

v3 to address in al

v2-v3 to address in al
v4-v7 to address in al
v8-v15 to address in al

Implementations should raise illegal instruction exceptions on vl<nf>r instructions
for EEW values that are not supported.

We have considered adding a whole register mask load instruction (vilrm.v) but have
decided to omit from initial extension. The primary purpose would be to inform the
microarchitecture that the data will be used as a mask. The same effect can be
achieved with the following code sequence, whose cost is at most four instructions.
Of these, the first could likely be removed as vl is often already in a scalar register,
and the last might already be present if the following vector instruction needs a new
SEW/LMUL. So, in best case only two instructions (of which only one performs vector
operations) are needed to synthesize the effect of the dedicated instruction:

csrr t0, vl
vsetvli t1, x0, e8, m8, ta, ma # Maximum VLMAX
vlim.v vO,
vsetvli x0, t0, <new type>

(ab)

Save current vl (potentially not needed)

Load mask register
Restore vl (potentially already present)

32.8. Vector Memory Alignment Constraints

If an element accessed by a vector memory instruction is not naturally aligned to the size of the
element, either the element is transferred successfully or an address misaligned exception is raised on
that element.

Support for misaligned vector memory accesses is independent of an implementation’s support for
misaligned scalar memory accesses.

An implementation may have neither, one, or both scalar and vector memory

accesses support some or all misaligned accesses in hardware. A separate PMA
should be defined to determine if vector misaligned accesses are supported in the

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.9. Vector Memory Consistency Model | Page 335

associated address range.

Vector misaligned memory accesses follow the same rules for atomicity as scalar misaligned memory
accesses.

32.9. Vector Memory Consistency Model
Vector memory instructions appear to execute in program order on the local hart.

Vector memory instructions follow RVWMO at the instruction level. If the Ztso extension is
implemented, vector memory instructions additionally follow RVTSO at the instruction level.

Except for vector indexed-ordered loads and stores, element operations are unordered within the
instruction.

Vector indexed-ordered loads and stores read and write elements from/to memory in element order
respectively, obeying RVWMO at the element level.

o Ztso only imposes RVTSO at the instruction level; intra-instruction ordering follows
RVWMO regardless of whether Ztso is implemented.

o More formal definitions required.

Instructions affected by the vector length register vi have a control dependency on vi, rather than a
data dependency. Similarly, masked vector instructions have a control dependency on the source mask
register, rather than a data dependency.

Treating the vector length and mask as control rather than data typically matches the
semantics of the corresponding scalar code, where branch instructions ordinarily

o would have been used. Treating the mask as control allows masked vector load
instructions to access memory before the mask value is known, without the need for
a misspeculation-recovery mechanism.

32.10. Vector Arithmetic Instruction Formats

The vector arithmetic instructions use a new major opcode (OP-V = 1818111,) which neighbors OP-FP.
The three-bit funct3 field is used to define sub-categories of vector instructions.

Formats for Vector Arithmetic Instructions under OP-V major opcode

31 26 25 24 20 19 15 14 12 1 7 6]
funct6 vm vs2 vsi O 0 O vd 1T 0 1 0 1 1 1
OPIVV
31 26 25 24 20 19 15 14 12 1 7 6]
funct6 vm vs2 vs1 O 0 1 vd / rd 1T 0 1 0 1 1 1
OPFVV
31 26 25 24 20 19 15 14 12 1 7 6]
funct6 vm vs2 vs1 o 1 0 vd / rd 1 0 1. 0 1 1 1
OPMVV

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.10. Vector Arithmetic Instruction Formats | Page 336

31 26 25 24 20 19 15 14 12 11 7 6]
funct6 vm vs2 imm[4:0] o 1 1 vd 10 1 0 1 1 1
OPIVI
31 26 25 24 20 19 15 14 12 11 7 6]
funct6 vm vs2 rsi 1 0 0O vd 1T 0 1 0 1 1 1
OPIVX
31 26 25 24 20 19 15 14 122 11 7 6]
funct6 vm vs2 rsi 1 0 1 vd 1T 0 1 0 1 1 1
OPFVF
31 26 25 24 20 19 15 14 12 11 7 6]
funct6é vm vs2 rsi 11 0 vd / rd 1T 0 1 0 1 1 1
OPMVX

32.10.1. Vector Arithmetic Instruction encoding
The funct3 field encodes the operand type and source locations.

Table 58. funct3

funct3[2:0] Category Operands Type of scalar operand

\ \) OPIVV vector-vector N/A

Y \ 1 OPFVV vector-vector N/A

0 1 0 OPMVV vector-vector N/A

\ 1 1 OPIVI vector-immediate imm[4:0]

1 Y Y OPIVX vector-scalar GPR x register rs1

1] 1 OPFVF vector-scalar FP f register rsi

1 1 o OPMVX vector-scalar GPR x register rs1

1 1 1 OPCFG scalars-imms GPR x register rs1 & rs2/imm

Integer operations are performed using unsigned or two’s-complement signed integer arithmetic
depending on the opcode.

o In this discussion, fixed-point operations are considered to be integer operations.

All standard vector floating-point arithmetic operations follow the IEEE-754/2008 standard. All vector
floating-point operations use the dynamic rounding mode in the frm register. Use of the frm field when
it contains an invalid rounding mode by any vector floating-point instruction—even those that do not
depend on the rounding mode, or when v1=0, or when vstart = v1--is reserved.

All vector floating-point code will rely on a valid value in frn. Implementations can
o make all vector FP instructions report exceptions when the rounding mode is invalid
to simplify control logic.

Vector-vector operations take two vectors of operands from vector register groups specified by vs2 and
vsl respectively.

Vector-scalar operations can have three possible forms. In all three forms, the vector register group

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.10. Vector Arithmetic Instruction Formats | Page 337

operand is specified by vs2. The second scalar source operand comes from one of three alternative
sources:

1. For integer operations, the scalar can be a 5-bit immediate, imm[4:6], encoded in the rsi field. The
value is sign-extended to SEW bits, unless otherwise specified.

2. For integer operations, the scalar can be taken from the scalar x register specified by rsi. If
XLEN>SEW, the least-significant SEW bits of the x register are used, unless otherwise specified. If
XLEN<SEW, the value from the x register is sign-extended to SEW bits.

3. For floating-point operations, the scalar can be taken from a scalar f register. If FLEN > SEW, the
value in the f registers is checked for a valid NaN-boxed value, in which case the least-significant
SEW bits of the f register are used, else the canonical NaN value is used. Vector instructions where
any floating-point vector operand’s EEW is not a supported floating-point type width (which
includes when FLEN < SEW) are reserved.

o Some instructions zero-extend the 5-bit immediate, and denote this by naming the
immediate vimm in the assembly syntax.

When adding a vector extension to the Zfinx/Zdinx/Zhinx extensions, floating-point
scalar arguments are taken from the x registers. NaN-boxing is not supported in

o these extensions, and so the vector floating-point scalar value is produced using the
same rules as for an integer scalar operand (i.e, when XLEN > SEW use the lowest
SEW bits, when XLEN < SEW use the sign-extended value).

Vector arithmetic instructions are masked under control of the vm field.

Assembly syntax pattern for vector binary arithmetic instructions

Operations returning vector results, masked by vm (v0.t, <nothing>)

vop.vv vd, vs2, vsl, vm # integer vector-vector vd[i] vs2[i] op vsi1[il]
vop.vx vd, vs2, rsl, vm # integer vector-scalar vd[i] vs2[i] op x[rsi]
vop.vi vd, vs2, imm, vm # integer vector-immediate vd[i] vs2[i] op imm

vfop.vv vd, vs2, vsl, vm # FP vector-vector operation vd[i] = vs2[i] fop
vs1[i]
vfop.vf vd, vs2, rsl, vm # FP vector-scalar operation vd[i] = vs2[i] fop
flrsi]

In the encoding, vs2 is the first operand, while rs1/imm is the second operand. This is

o the opposite to the standard scalar ordering. This arrangement retains the existing
encoding conventions that instructions that read only one scalar register, read it from
rs1, and that 5-bit immediates are sourced from the rsi field.

Assembly syntax pattern for vector ternary arithmetic instructions (multiply-
add)

Integer operations overwriting sum input

vop.vv vd, vsl, vs2, vm # vd[i] = vs1[i] * vs2[i] + vd[i]
vop.vx vd, rsl, vs2, vm # vd[i] = x[rs1] * vs2[i] + vd[i]

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.10. Vector Arithmetic Instruction Formats | Page 338

Integer operations overwriting product input
vop.vv vd, vsl, vs2, vm # vd[i] = vs1[i] * vd[i] + vs2[i]
vop.vx vd, rsl, vs2, vm # vd[i] = x[rs1] * vd[i] + vs2[i]

Floating-point operations overwriting sum input
vfop.vv vd, vsl, vs2, vm # vd[i] = vs1[i] * vs2[i] + vd[i]
vfop.vf vd, rsl, vs2, vm # vd[i] = flrs1] * vs2[i] + vd[i]

Floating-point operations overwriting product input
vfop.vv vd, vsl, vs2, vm # vd[i] = vs1[i] * vd[i] + vs2[i]
vfop.vf vd, rsl, vs2, vm # vd[i] = flrs1] * vd[i] + vs2[i]

For ternary multiply-add operations, the assembler syntax always places the

o destination vector register first, followed by either rsi1 or vsi, then vs2. This ordering
provides a more natural reading of the assembler for these ternary operations, as the
multiply operands are always next to each other.

32.10.2. Widening Vector Arithmetic Instructions

A few vector arithmetic instructions are defined to be widening operations where the destination
vector register group has EEW=2*SEW and EMUL=2*LMUL. These are generally given a vwx prefix on
the opcode, or vfwx for vector floating-point instructions.

The first vector register group operand can be either single or double-width.

Assembly syntax pattern for vector widening arithmetic instructions

Double-width result, two single-width sources: 2%*SEW = SEW op SEW

vwop.vv vd, vs2, vsl, vm # integer vector-vector vd[i] = vs2[i] op
vs1[i]
vwop.vx vd, vs2, rsl, vm # integer vector-scalar vd[i] = vs2[i] op
x[rs1]

Double-width result, first source double-width, second source single-width:
2%SEW = 2%xSEW op SEW

vwop.wv vd, vs2, vsl, vm # integer vector-vector vd[i] = vs2[i] op
vs1[i]
vwop.wx vd, vs2, rsl, vm # integer vector-scalar vd[i] = vs2[i] op
x[rsi]

Originally, a w suffix was used on opcode, but this could be confused with the use of a
o w suffix to mean word-sized operations in doubleword integers, so the w was moved to
prefix.

The floating-point widening operations were changed to vfwx from vwf* to be more
0 consistent with any scalar widening floating-point operations that will be written as

fw*,

Widening instruction encodings must follow the constraints in Section 32.5.2.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 339
32.10.3. Narrowing Vector Arithmetic Instructions

A few instructions are provided to convert double-width source vectors into single-width destination
vectors. These instructions convert a vector register group specified by vs2 with
EEW/EMUL=2*SEW/2*LMUL to a vector register group with the current SEW/LMUL setting. Where
there is a second source vector register group (specified by vs1), this has the same (narrower) width as
the result (i.e.,, EEW=SEW).

An alternative design decision would have been to treat SEW/LMUL as defining the
e size of the source vector register group. The choice here is motivated by the belief
the chosen approach will require fewer vtype changes.

0 Compare operations that set a mask register are also implicitly a narrowing
operation.

A vnx prefix on the opcode is used to distinguish these instructions in the assembler, or a vfn* prefix

for narrowing floating-point opcodes. The double-width source vector register group is signified by a w
in the source operand suffix (e.g., vnsra.wv)

Assembly syntax pattern for vector narrowing arithmetic instructions

Single-width result vd, double-width source vs2, single-width source vsl/rsi
SEW = 2xSEW op SEW

vnop.wv vd, vs2, vsl, vm # integer vector-vector vd[i] = vs2[i] op
vsl[i]
vhop.wx vd, vs2, rsl, vm # integer vector-scalar vd[i] = vs2[i] op
x[rsi]

Narrowing instruction encodings must follow the constraints in Section 32.5.2.

32.11. Vector Integer Arithmetic Instructions

A set of vector integer arithmetic instructions is provided. Unless otherwise stated, integer operations
wrap around on overflow.

32.11.1. Vector Single-Width Integer Add and Subtract

Vector integer add and subtract are provided. Reverse-subtract instructions are also provided for the
vector-scalar forms.

Integer adds.

vadd.vv vd, vs2, vsl, vm # Vector-vector
vadd.vx vd, vs2, rsl, vm vector-scalar
vadd.vi vd, vs2, imm, vm # vector-immediate

=

Integer subtract
vsub.vv vd, vs2, vsl, vm # Vector-vector
vsub.vx vd, vs2, rsl, vm # vector-scalar

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 340

Integer reverse subtract

vrsub.vx vd, vs2,

rsl, vm

vrsub.vi vd, vs2, imm, vm

vd[i]
vd[i]

x[rsl] - vs2[i]
imm - vs2[i]

A vector of integer values can be negated using a reverse-subtract instruction with a
scalar operand of x6. An assembly pseudoinstruction vneg.v vd,vs = vrsub.vx vd,vs,x0
is provided.

32.11.2. Vector Widening Integer Add/Subtract

The widening add/subtract instructions are provided in both signed and unsigned variants, depending
on whether the narrower source operands are first sign- or zero-extended before forming the double-
width sum.

Widening

vwaddu
vwaddu
vwsubu
vwsubu

.VV
. VX
.VV
. VX

unsigned
vd, vs2,
vd, vs2,
vd, vs2,
vd, vs2,

integer
vsl, vm
rsl, vm
vsl, vm
rsl, vm

add/subtract, 2%*SEW = SEW +/- SEW
vector-vector
vector-scalar
vector-vector
vector-scalar

Widening signed integer add/subtract, 2*SEW = SEW +/- SEW

vwadd.
vwadd.
vwsub.
vwsub.

Widening

vwaddu
vwaddu
vwsubu
vwsubu

Vv
VX
Vv
VX

WV
. WX
LWV
WX

vd,
vd,
vd,
vd,

unsigned

vd,
vd,
vd,
vd,

vVs2,
VSs2,
VS2,
vs2,

VS2,
vs2,
vVs2,
VSs2,

vsl,
rsi,
vsl,
rsl,

vm
vm
vim
vm

integer

vsl,
rsl,
vsl,
rsi,

vim
vm
vm
vm

vector-vector
vector-scalar
vector-vector
vector-scalar

add/subtract, 2%SEW = 2%SEW +/- SEW
vector-vector
vector-scalar
vector-vector
vector-scalar

Widening signed integer add/subtract, 2*SEW = 2%SEW +/- SEW

vwadd.
vwadd.
vwsub.
vwsub.

32.11.3. Vector Integer Extension

wv
WX
wv
WX

vd,
vd,
vd,
vd,

vVs2,
Vs2,
VS2,
vs2,

vsl,
rsi,
vsl,
rsl,

vm
vm
vim
vm

vector-vector
vector-scalar
vector-vector
vector-scalar

An integer value can be doubled in width using the widening add instructions with a
scalar operand of x6. Assembly pseudoinstructions vwevt.x.x.v vd,vs,vm = vwadd.vx
vd,vs,x8,vm and vwcvtu.x.x.v vd,vs,vm = vwaddu.vx vd,vs,x8,vm are provided.

The vector integer extension instructions zero- or sign-extend a source vector integer operand with
EEW less than SEW to fill SEW-sized elements in the destination. The EEW of the source is 1/2, 1/4, or
1/8 of SEW, while EMUL of the source is (EEW/SEW)*LMUL. The destination has EEW equal to SEW and
EMUL equal to LMUL.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 341

Zero-extend SEW/2 source to SEW destination
Sign-extend SEW/2 source to SEW destination
Zero-extend SEW/4 source to SEW destination
Sign-extend SEW/4 source to SEW destination
Zero-extend SEW/8 source to SEW destination
Sign-extend SEW/8 source to SEW destination

vzext.vf2 vd, vs2, vm
vsext.vf2 vd, vs2, vm
vzext.vf4 vd, vs2, vm
vsext.vf4 vd, vs2, vm
vzext.vf8 vd, vs2, vm
vsext.vf8 vd, vs2, vm

H OH H H B H

If the source EEW is not a supported width, or source EMUL would be below the minimum legal LMUL,
the instruction encoding is reserved.

Standard vector load instructions access memory values that are the same size as
the destination register elements. Some application code needs to operate on a
range of operand widths in a wider element, for example, loading a byte from

o memory and adding to an eight-byte element. To avoid having to provide the cross-
product of the number of vector load instructions by the number of data types (byte,
word, halfword, and also signed/unsigned variants), we instead add explicit extension
instructions that can be used if an appropriate widening arithmetic instruction is not
available.

32.11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions

To support multi-word integer arithmetic, instructions that operate on a carry bit are provided. For
each operation (add or subtract), two instructions are provided: one to provide the result (SEW width),
and the second to generate the carry output (single bit encoded as a mask boolean).

The carry inputs and outputs are represented using the mask register layout as described in Section
32.4.5. Due to encoding constraints, the carry input must come from the implicit ve register, but carry
outputs can be written to any vector register that respects the source/destination overlap restrictions.

vadc and vsbc add or subtract the source operands and the carry-in or borrow-in, and write the result to
vector register vd. These instructions are encoded as masked instructions (vm=8), but they operate on
and write back all body elements. Encodings corresponding to the unmasked versions (vm=1) are
reserved.

vmadc and vmsbc add or subtract the source operands, optionally add the carry-in or subtract the borrow-
in if masked (vm=8), and write the result back to mask register vd. If unmasked (vm=1), there is no carry-
in or borrow-in. These instructions operate on and write back all body elements, even if masked.
Because these instructions produce a mask value, they always operate with a tail-agnostic policy.

Produce sum with carry.

vd[i] = vs2[i] + vs1[i] + vO.mask[i]
vadc.vvm vd, vs2, vsl, vO # Vector-vector

vd[i] = vs2[i] + x[rs1] + vO.mask[i]
vadc.vxm vd, vs2, rsl, v@ # Vector-scalar

vd[i] = vs2[i] + imm + vO.mask[i]
vadc.vim vd, vs2, imm, vO0 # Vector-immediate

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 342

Produce carry out in mask register format

vd.mask[i] = carry_out(vs2[i] + vs1[i] + vB@.mask[i])
vmadc.vvm vd, vs2, vsl, v@ # Vector-vector

vd.mask[i] = carry_out(vs2[i] + x[rsl] + vB.mask[i])
vmadc.vxm vd, vs2, rsl, vO # Vector-scalar

vd.mask[i] = carry_out(vs2[i] + imm + vO.mask[i])
vmadc.vim vd, vs2, imm, v0 # Vector-immediate

vd.mask[i] = carry_out(vs2[i] + vsi1[i])
vmadc.vv vd, vs2, vsl # Vector-vector, no carry-in

vd.mask[i] = carry_out(vs2[i] + x[rs1])
vmadc.vx vd, vs2, rsl # Vector-scalar, no carry-in

vd.mask[i] = carry_out(vs2[i] + imm)

vmadc.vi vd, vs2, imm # Vector-immediate, no carry-in

Because implementing a carry propagation requires executing two instructions with unchanged inputs,
destructive accumulations will require an additional move to obtain correct results.

Example multi-word arithmetic sequence, accumulating into v4
vmadc.vvm v1, v4, v8, vO # Get carry into temp register vl
vadc.vvm v4, v4, v8, vO # Calc new sum

vmmv.m vO, vl # Move temp carry into v@ for next word

The subtract with borrow instruction vsbc performs the equivalent function to support long word
arithmetic for subtraction. There are no subtract with immediate instructions.

Produce difference with borrow.

vd[i] = vs2[i] - vs1[i] - vO.mask[i]
vsbc.vvm vd, vs2, vsl, v@ # Vector-vector

vd[i] = vs2[i] - x[rs1] - vO.mask[i]
vsbc.vxm vd, vs2, rsl, vO # Vector-scalar

Produce borrow out in mask register format

vd.mask[i] = borrow_out(vs2[i] - vs1[i] - vO@.mask[i])
vmsbc.vvm vd, vs2, vsl, v@ # Vector-vector

vd.mask[i] = borrow_out(vs2[i] - x[rsl] - vO.mask[i])
vmshc.vxm vd, vs2, rsl, vO # Vector-scalar

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 343

vd.mask[i] = borrow_out(vs2[i] - vsi[il])
vmsbc.vv vd, vs2, vsl # Vector-vector, no borrow-in

vd.mask[i] = borrow_out(vs2[i] - x[rsi1])
vmshc.vx vd, vs2, rsl # Vector-scalar, no borrow-in

For vmsbe, the borrow is defined to be 1 iff the difference, prior to truncation, is negative.
For vadc and vsbc, the instruction encoding is reserved if the destination vector register is ve.
0 This constraint corresponds to the constraint on masked vector operations that

overwrite the mask register.

32.11.5. Vector Bitwise Logical Instructions

Bitwise logical operations.

vand.vv vd, vs2, vsl, vm # Vector-vector
vand.vx vd, vs2, rsl, vm # vector-scalar
vand.vi vd, vs2, imm, vm # vector-immediate

vor.vv vd, vs2, vsl, vm # Vector-vector
vor.vx vd, vs2, rsl, vm # vector-scalar
vor.vi vd, vs2, imm, vm # vector-immediate
vxor.vv vd, vs2, vsl, vm # Vector-vector
vxor.vx vd, vs2, rsl, vm # vector-scalar
vxor.vi vd, vs2, imm, vm # vector-immediate

With an immediate of -1, scalar-immediate forms of the vxor instruction provide a
o bitwise NOT operation. This is provided as an assembler pseudoinstruction vnot.v

vd,vs,vm = vxor.vi vd,vs,-1,vm.

32.11.6. Vector Single-Width Shift Instructions

A full set of vector shift instructions are provided, including logical shift left (st1), and logical (zero-
extending sr1) and arithmetic (sign-extending sra) shift right. The data to be shifted is in the vector
register group specified by vs2 and the shift amount value can come from a vector register group vsi1, a
scalar integer register rsi1, or a zero-extended 5-bit immediate. Only the low Ig2(SEW) bits of the shift-

amount value are used to control the shift amount.

Bit shift operations

vsll.vv vd, vs2, vsl, vm # Vector-vector
vsll.vx vd, vs2, rsl, vm # vector-scalar
vsll.vi vd, vs2, uvimm, vm # vector-immediate

vsrl.vv vd, vs2, vsl, vm # Vector-vector
vsrl.vx vd, vs2, rsl, vm # vector-scalar
vsrl.vi vd, vs2, uvimm, vm # vector-immediate

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 344

vsra.vv vd, vs2, vsl, vm # Vector-vector
vsra.vx vd, vs2, rsl, vm # vector-scalar
vsra.vi vd, vs2, uimm, vm # vector-immediate

32.11.7. Vector Narrowing Integer Right Shift Instructions

The narrowing right shifts extract a smaller field from a wider operand and have both zero-extending
(sr1) and sign-extending (sra) forms. The shift amount can come from a vector register group, or a
scalar x register, or a zero-extended 5-bit immediate. The low lg2(2*SEW) bits of the shift-amount
value are used (e.g., the low 6 bits for a SEW=64-bit to SEW=32-bit narrowing operation).

Narrowing shift right logical, SEW = (2%SEW) >> SEW
vhsrl.wv vd, vs2, vsl, vm # vector-vector

vnsrl.wx vd, vs2, rsl, vm # vector-scalar

vnsrl.wi vd, vs2, uimm, vm # vector-immediate

Narrowing shift right arithmetic, SEW = (2*SEW) >> SEW

vnsra.wv vd, vs2,
vnsra.wx vd, vs2,
vnsra.wi vd, vs2,

vsl, vm # vector-vector
rsl, vm # vector-scalar
uimm, vm # vector-immediate

Future extensions might add support for versions that narrow to a destination that is
1/4 the width of the source.

An integer value can be halved in width using the narrowing integer shift instructions
with a scalar operand of x6. An assembly pseudoinstruction is provided vncvt.x.x.w

vd,vs,vm = vnsrl.wx vd,vs,x0,vm.

32.11.8. Vector Integer Compare Instructions

The following integer compare instructions write 1 to the destination mask register element if the
comparison evaluates to true, and ® otherwise. The destination mask vector is always held in a single
vector register, with a layout of elements as described in Section 32.4.5. The destination mask vector

register may be the same as the source vector mask register (ve).

Set if equal

vmseq.vv vd, vs2, vsl, vm # Vector-vector
vmseq.vx vd, vs2, rsl, vm vector-scalar
vmseq.vi vd, vs2, imm, vm # vector-immediate

H*

Set if not equal

vmsne.vv vd, vs2, vsl, vm # Vector-vector
vmsne.vx vd, vs2, rsl, vm vector-scalar
vmsne.vi vd, vs2, imm, vm # vector-immediate

B S

Set if less than, unsigned

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 345

vmsltu.vv vd, vs2, vsl, vm # Vector-vector
vmsltu.vx vd, vs2, rsl, vm # Vector-scalar

Set if 1less than, signed
vmslt.vv vd, vs2, vsl, vm # Vector-vector
vmslt.vx vd, vs2, rsl, vm # vector-scalar

Set if less than or equal, unsigned

vmsleu.vv vd, vs2, vsl, vm # Vector-vector
vmsleu.vx vd, vs2, rsl, vm # vector-scalar
vmsleu.vi vd, vs2, imm, vm # Vector-immediate

Set if less than or equal, signed

vmsle.vv vd, vs2, vsl, vm # Vector-vector
vmsle.vx vd, vs2, rsl, vm # vector-scalar
vmsle.vi vd, vs2, imm, vm # vector-immediate

Set if greater than, unsigned
vmsgtu.vx vd, vs2, rsl, vm # Vector-scalar
vmsgtu.vi vd, vs2, imm, vm # Vector-immediate

Set if greater than, signed
vmsgt.vx vd, vs2, rsl, vm # Vector-scalar
vmsgt.vi vd, vs2, imm, vm # Vector-immediate

Following two instructions are not provided directly
Set if greater than or equal, unsigned

vmsgeu.vx vd, vs2, rsl, vm # Vector-scalar
Set if greater than or equal, signed
vmsge.vx vd, vs2, rsl, vm # Vector-scalar

The following table indicates how all comparisons are implemented in native machine code.

Comparison Assembler Mapping Assembler Pseudoinstruction
va < vb vms1lt{u}.vv vd, va, vb, vm

va <= vb vmsle{u}.vv vd, va, vb, vm

va > vb vmslt{u}.vv vd, vb, va, vm vmsgt{u}.vv vd, va, vb, vm
va >= vb vmsle{u}.vv vd, vb, va, vm vmsge{u}.vv vd, va, vb, vm
va < X vmslt{u}.vx vd, va, x, vm

va <= X vmsle{u}.vx vd, va, x, vm

va > X vmsgt{u}.vx vd, va, x, vm

va >= X see below

va < i vmsle{u}.vi vd, va, i-1, vm vmslt{u}.vi vd, va, i, vm
va <= i vmsle{u}.vi vd, va, i, vm

va > i vmsgt{u}.vi vd, va, i, vm

va >= i vmsgt{u}.vi vd, va, i-1, vm vmsge{u}.vi vd, va, i, vm

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 346

va, vb vector register groups
X scalar integer register
i immediate

The immediate forms of vmslt{u}.vi are not provided as the immediate value can be
decreased by 1 and the vmsle{u}.vi variants used instead. The vmsle.vi range is -16 to

o 15, resulting in an effective vmslt.vi range of -15 to 16. The vmsleu.vi range is ® to 15
giving an effective vms1ltu.vi range of 1to 16 (Note, vmsltu.vi with immediate ® is not
useful as it is always false).

Because the 5-bit vector immediates are always sign-extended, when the high bit of
the simm5 immediate is set, vmsleu.vi also supports unsigned immediate values in the

o range 2°-16 to 2°-1, allowing corresponding vmsltu.vi compares against unsigned
immediates in the range 2°*-15 to 2°%. Note that vmsltu.vi with immediate 2°* is not
useful as it is always true.

Similarly, vmsge{u}.vi is not provided and the compare is implemented using vmsgt{u}.vi with the
immediate decremented by one. The resulting effective vmsge.vi range is -15 to 16, and the resulting
effective vmsgeu.vi range is 1to 16 (Note, vmsgeu.vi with immediate O is not useful as it is always true).

The vmsgt forms for register scalar and immediates are provided to allow a single
o compare instruction to provide the correct polarity of mask value without using
additional mask logical instructions.

To reduce encoding space, the vmsge{u}.vx form is not directly provided, and so the va > x case
requires special treatment.

The vmsge{u}.vx could potentially be encoded in a non-orthogonal way under the
unused OPIVI variant of vms1t{u}. These would be the only instructions in OPIVI that

o use a scalar x'register however. Alternatively, a further two funct6 encodings could
be used, but these would have a different operand format (writes to mask register)
than others in the same group of 8 funct6 encodings. The current PoR is to omit
these instructions and to synthesize where needed as described below.

The vmsge{u}.vx operation can be synthesized by reducing the value of x by 1 and using the vmsgt{u}.vx
instruction, when it is known that this will not underflow the representation in x.

Sequences to synthesize ‘vmsge{u}.vx instruction
va >= X, X > minimum

addi t0, x, -1; vmsgt{u}.vx vd, va, t0, vm

The above sequence will usually be the most efficient implementation, but assembler
pseudoinstructions can be provided for cases where the range of x is unknown.

unmasked va >= x

pseudoinstruction: vmsge{u}.vx vd, va, x

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 347
expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
masked va >= x, vd != v0

pseudoinstruction: vmsge{u}.vx vd, va, x, vO.t
expansion: vmslt{u}.vx vd, va, x, vO.t; vmxor.mm vd, vd, vO

masked va >= x, vd == vO0

pseudoinstruction: vmsge{u}.vx vd, va, x, vO.t, vt
expansion: vmslt{u}.vx vt, va, x; vmandn.mm vd, vd, vt

masked va >= x, any vd

pseudoinstruction: vmsge{u}.vx vd, va, x, vO0.t, vt
expansion: vmslt{u}.vx vt, va, x; vmandn.mm vt, vO, vt; vmandn.mm vd, vd,
vO; vmor.mm vd, vt, vd

The vt argument to the pseudoinstruction must name a temporary vector
register that is
not same as vd and which will be clobbered by the pseudoinstruction

Compares effectively AND in the mask under a mask-undisturbed policy if the destination register is
vo, e.g.,

(a < b) & (b < c¢) in two instructions when mask-undisturbed
vmslt.vv vO, va, vb # A1l body elements written
vmslt.vv v0, vb, vc, vO.t # Only update at set mask

Compares write mask registers, and so always operate under a tail-agnostic policy.

32.11.9. Vector Integer Min/Max Instructions
Signed and unsigned integer minimum and maximum instructions are supported.
Unsigned minimum

vminu.vv vd, vs2, vsl, vm # Vector-vector
vminu.vx vd, vs2, rsl, vm # vector-scalar

Signed minimum

vmin.vv vd, vs2, vsl, vm # Vector-vector
vmin.vx vd, vs2, rsl, vm # vector-scalar
Unsigned maximum

vmaxu.vv vd, vs2, vsl, vm # Vector-vector

vmaxu.vx vd, vs2, rsl, vm # vector-scalar

Signed maximum

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 348

vmax.vv vd, vs2, vsl, vm # Vector-vector
vmax.vx vd, vs2, rsl, vm # vector-scalar

32.11.10. Vector Single-Width Integer Multiply Instructions

The single-width multiply instructions perform a SEW-bit*SEW-bit multiply to generate a 2*SEW-bit
product, then return one half of the product in the SEW-bit-wide destination. The mul versions write the
low word of the product to the destination register, while the mulh versions write the high word of the
product to the destination register.

Signed multiply, returning low bits of product
vmul.vv vd, vs2, vsl, vm # Vector-vector
vmul.vx vd, vs2, rsl, vm # vector-scalar

Signed multiply, returning high bits of product
vmulh.vv vd, vs2, vsl, vm # Vector-vector
vmulh.vx vd, vs2, rsl, vm # vector-scalar

Unsigned multiply, returning high bits of product
vmulhu.vv vd, vs2, vsl, vm # Vector-vector
vmulhu.vx vd, vs2, rsl, vm # vector-scalar

Signed(vs2)-Unsigned multiply, returning high bits of product
vmulhsu.vv vd, vs2, vsl, vm # Vector-vector
vmulhsu.vx vd, vs2, rsl, vm # vector-scalar

e There is no vmulhus.vx opcode to return high half of unsigned-vector * signed-scalar
product. The scalar can be splatted to a vector, then a vmulhsu.vv used.

The current vmulh* opcodes perform simple fractional multiplies, but with no option to

o scale, round, and/or saturate the result. A possible future extension can consider
variants of vmulh, vmulhu, vmulhsu that use the vxrm rounding mode when discarding low
half of product. There is no possibility of overflow in these cases.

32.11.11. Vector Integer Divide Instructions
The divide and remainder instructions are equivalent to the RISC-V standard scalar integer

multiply/divides, with the same results for extreme inputs.

Unsigned divide.
vdivu.vv vd, vs2, vsl, vm # Vector-vector
vdivu.vx vd, vs2, rsl, vm # vector-scalar

Signed divide

vdiv.vv vd, vs2, vsl, vm # Vector-vector
vdiv.vx vd, vs2, rsl, vm # vector-scalar

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 349

Unsigned remainder
vremu.vv vd, vs2, vsl, vm # Vector-vector
vremu.vx vd, vs2, rsl, vm # vector-scalar

Signed remainder
vrem.vv vd, vs2, vsl, vm # Vector-vector
vrem.vx vd, vs2, rsl, vm # vector-scalar

The decision to include integer divide and remainder was contentious. The argument

6 in favor is that without a standard instruction, software would have to pick some
algorithm to perform the operation, which would likely perform poorly on some
microarchitectures versus others.

o There is no instruction to perform a "scalar divide by vector" operation.

32.11.12. Vector Widening Integer Multiply Instructions

The widening integer multiply instructions return the full 2*SEW-bit product from an SEW-bit*SEW-bit
multiply.

Widening signed-integer multiply
vwmul.vv vd, vs2, vsl, vm # vector-vector
vwmul.vx vd, vs2, rsl, vm # vector-scalar

Widening unsigned-integer multiply
vwmulu.vv vd, vs2, vsl, vm # vector-vector
vwmulu.vx vd, vs2, rsl, vm # vector-scalar

Widening signed(vs2)-unsigned integer multiply
vwmulsu.vv vd, vs2, vsl, vm # vector-vector
vwmulsu.vx vd, vs2, rsl, vm # vector-scalar

32.11.13. Vector Single-Width Integer Multiply-Add Instructions

The integer multiply-add instructions are destructive and are provided in two forms, one that
overwrites the addend or minuend (vmacc, vnmsac) and one that overwrites the first multiplicand (vmadd,

vnmsub).
The low half of the product is added or subtracted from the third operand.

sac Is intended to be read as "subtract from accumulator". The opcode is vnmsac to
o match the (unfortunately counterintuitive) floating-point fnmsub instruction definition.
Similarly for the vnmsub opcode.

Integer multiply-add, overwrite addend
vmacc.vv vd, vsl, vs2, vm # vd[il = +(vs1[i] * vs2[i]) + vd[i]
vmacc.vx vd, rsl, vs2, vm # vd[i] = +(x[rs1] * vs2[i]) + vd[i]

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.11. Vector Integer Arithmetic Instructions | Page 350

Integer multiply-sub, overwrite minuend
vnmsac.vv vd, vsl, vs2, vm # vd[i] = -(vsi[i] * vs2[i]) + vd[i]
vnmsac.vx vd, rsl, vs2, vm # vd[i]l = -(x[rs1] * vs2[i]) + vd[i]

Integer multiply-add, overwrite multiplicand
vmadd.vv vd, vsl, vs2, vm # vd[i] = (vsi[i] * vd[i]) + vs2[i]
vmadd.vx vd, rsl, vs2, vm # vd[i]l = (x[rs1] * vd[i]) + vs2[i]

Integer multiply-sub, overwrite multiplicand
vnmsub.vv vd, vsl, vs2, vm # vd[i] = -(vsi[i] * vd[i]) + vs2[i]
vnmsub.vx vd, rsl, vs2, vm # vd[i]l = -(x[rs1] * vd[i]) + vs2[i]

32.11.14. Vector Widening Integer Multiply-Add Instructions

The widening integer multiply-add instructions add the full 2*SEW-bit product from a SEW-bit*SEW-bit
multiply to a 2*SEW-bit value and produce a 2*SEW-bit result. All combinations of signed and
unsigned multiply operands are supported.

Widening unsigned-integer multiply-add, overwrite addend
vwmaccu.vv vd, vsl, vs2, vm # vd[i] = +(vs1[i] * vs2[i]) + vd[i]
vwmaccu.vx vd, rsl, vs2, vm # vd[i] = +(x[rs1] * vs2[i]) + vd[i]

Widening signed-integer multiply-add, overwrite addend
vwmacc.vv vd, vsl, vs2, vm # vd[i] = +(vs1[i] * vs2[i]) + vd[i]
vwmacc.vx vd, rsl, vs2, vm # vd[i] = +(x[rs1] * vs2[i]) + vd[i]

Widening signed-unsigned-integer multiply-add, overwrite addend

vwmaccsu.vv vd, vsl, vs2, vm # vd[i] = +(signed(vs1[i]) * unsigned(vs2[i])) +
vd[i]

vwmaccsu.vx vd, rsl, vs2, vm # vd[i]
vd[i]

+(signed(x[rs1]) * unsigned(vs2[i])) +

Widening unsigned-signed-integer multiply-add, overwrite addend
vwmaccus.vx vd, rsl, vs2, vm # vd[i] = +(unsigned(x[rsl]) * signed(vs2[i])) +
vd[i]

32.11.15. Vector Integer Merge Instructions

The vector integer merge instructions combine two source operands based on a mask. Unlike regular
arithmetic instructions, the merge operates on all body elements (i.e.,, the set of elements from vstart
up to the current vector length in vi).

The vmerge instructions are encoded as masked instructions (vm=0). The instructions combine two
sources as follows. At elements where the mask value is zero, the first operand is copied to the
destination element, otherwise the second operand is copied to the destination element. The first
operand is always a vector register group specified by vs2. The second operand is a vector register
group specified by vs1 or a scalar x register specified by rs1 or a 5-bit sign-extended immediate.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.12. Vector Fixed-Point Arithmetic Instructions | Page 351

vmerge.vvm vd, vs2, vsl, vO0 # vd[i]
vmerge.vxm vd, vs2, rsl, v0 # vd[i]
vmerge.vim vd, vs2, imm, v0 # vd[i]

vO.mask[i] ? vs1[i] : vs2[i]
vO.mask[i] ? x[rs1] : vs2[i]
vO.mask[i] ? imm : vs2[i]

32.11.16. Vector Integer Move Instructions

The vector integer move instructions copy a source operand to a vector register group. The vmv.v.v
variant copies a vector register group, whereas the vmv.v.x and vmv.v.i variants splat a scalar register
or immediate to all active elements of the destination vector register group. These instructions are
encoded as unmasked instructions (vm=1). The first operand specifier (vs2) must contain vo, and any
other vector register number in vs2 is reserved.

vs1[i]
x[rsi]
imm

vimv.v.v vd, vsl # vd[i]
vmv.v.x vd, rsl # vd[i]
vmv.v.i vd, imm # vd[i]

o Mask values can be widened into SEW-width elements using a sequence vmv.v.i vd,
0; vmerge.vim vd, vd, 1, vO.

e The vector integer move instructions share the encoding with the vector merge
instructions, but with vm=1 and vs2=ve.

The form vmv.v.v vd, vd, which leaves body elements unchanged, can be used to indicate that the
register will next be used with an EEW equal to SEW.

Implementations that internally reorganize data according to EEW can shuffle the
o internal representation according to SEW. Implementations that do not internally
reorganize data can dynamically elide this instruction, and treat as a NOP.

e The vmv.v.v vd. vd instruction is not a RISC-V HINT as a tail-agnostic setting may
cause an architectural state change on some implementations.

32.12. Vector Fixed-Point Arithmetic Instructions

The preceding set of integer arithmetic instructions is extended to support fixed-point arithmetic.

A fixed-point number is a two’'s-complement signed or unsigned integer interpreted as the numerator
in a fraction with an implicit denominator. The fixed-point instructions are intended to be applied to
the numerators; it is the responsibility of software to manage the denominators. An N-bit element can
hold two’s-complement signed integers in the range -2"...+2"'-1, and unsigned integers in the range ®
... +2"-1. The fixed-point instructions help preserve precision in narrow operands by supporting scaling
and rounding, and can handle overflow by saturating results into the destination format range.

o The widening integer operations described above can also be used to avoid overflow.

32.12.1. Vector Single-Width Saturating Add and Subtract

Saturating forms of integer add and subtract are provided, for both signed and unsigned integers. If

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.12. Vector Fixed-Point Arithmetic Instructions | Page 352

the result would overflow the destination, the result is replaced with the closest representable value,
and the vxsat bit is set.

Saturating adds of unsigned integers.
vsaddu.vv vd, vs2, vsl, vm # Vector-vector
vsaddu.vx vd, vs2, rsl, vm # vector-scalar
vsaddu.vi vd, vs2, imm, vm # vector-immediate

Saturating adds of signed integers.

vsadd.vv vd, vs2, vsl, vm # Vector-vector
vsadd.vx vd, vs2, rsl, vm # vector-scalar
vsadd.vi vd, vs2, imm, vm # vector-immediate

Saturating subtract of unsigned integers.
vssubu.vv vd, vs2, vsl, vm # Vector-vector
vssubu.vx vd, vs2, rsl, vm # vector-scalar

Saturating subtract of signed integers.
vssub.vv vd, vs2, vsl, vm # Vector-vector
vssub.vx vd, vs2, rsl, vm # vector-scalar

32.12.2. Vector Single-Width Averaging Add and Subtract

The averaging add and subtract instructions right shift the result by one bit and round off the result
according to the setting in vxrm. Both unsigned and signed versions are provided. For vaaddu and vaadd
there can be no overflow in the result. For vasub and vasubu, overflow is ignored and the result wraps
around.

o For vasub, overflow occurs only when subtracting the smallest number from the

largest number under rnu or rne rounding.

Averaging add

Averaging adds of unsigned integers.
vaaddu.vv vd, vs2, vsl, vm # roundoff_unsigned(vs2[i] + vsi1[i], 1)
vaaddu.vx vd, vs2, rsl, vm # roundoff_unsigned(vs2[i] + x[rs1], 1)

Averaging adds of signed integers.

vaadd.vv vd, vs2, vsl, vm # roundoff_signed(vs2[i] + vsi[i], 1)
vaadd.vx vd, vs2, rsl, vm # roundoff_signed(vs2[i] + x[rsi1], 1)

Averaging subtract

Averaging subtract of unsigned integers.

vasubu.vv vd, vs2, vsl, vm # roundoff_unsigned(vs2[i] - vsi1[i], 1)
vasubu.vx vd, vs2, rsl, vm # roundoff_unsigned(vs2[i] - x[rsi1], 1)
Averaging subtract of signed integers.

vasub.vv vd, vs2, vsl, vm # roundoff_signed(vs2[i] - vsi1[i], 1)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.12. Vector Fixed-Point Arithmetic Instructions | Page 353

vasub.vx vd, vs2, rsl, vm # roundoff_signed(vs2[i] - x[rsi1], 1)

32.12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation

The signed fractional multiply instruction produces a 2*SEW product of the two SEW inputs, then shifts
the result right by SEW-1 bits, rounding these bits according to vxrm, then saturates the result to fit into
SEW bits. If the result causes saturation, the vxsat bit is set.

Signed saturating and rounding fractional multiply

See vxrm description for rounding calculation

vsmul.vv vd, vs2, vsl, vm # vd[i] = clip(roundoff_signed(vs2[i]*vs1[i], SEW-
1))

vsmul.vx vd, vs2, rsl, vm # vd[i] = clip(roundoff_signed(vs2[i]l*x[rs1], SEW-

1))

When multiplying two N-bit signed numbers, the largest magnitude is obtained for -
20T+ 2N producing a result +2°N2 which has a single (zero) sign bit when held in 2N
o bits. All other products have two sign bits in 2N bits. To retain greater precision in N
result bits, the product is shifted right by one bit less than N, saturating the largest
magnitude result but increasing result precision by one bit for all other products.

We do not provide an equivalent fractional multiply where one input is unsigned, as

0 these would retain all upper SEW bits and would not need to saturate. This operation
is partly covered by the vmulhu and vmulhsu instructions, for the case where rounding is
simply truncation (rdn).

32.12.4. Vector Single-Width Scaling Shift Instructions

These instructions shift the input value right, and round off the shifted out bits according to vxrm. The
scaling right shifts have both zero-extending (vssr1) and sign-extending (vssra) forms. The data to be
shifted is in the vector register group specified by vs2 and the shift amount value can come from a
vector register group vsi, a scalar integer register rsi, or a zero-extended 5-bit immediate. Only the
low lg2(SEW) bits of the shift-amount value are used to control the shift amount.

Scaling shift right logical

vssrl.vv vd, vs2, vsl, vm # vd[i] = roundoff_unsigned(vs2[i], vsi1[i])
vssrl.vx vd, vs2, rsl, vm # vd[i] = roundoff_unsigned(vs2[i], x[rsi1])
vssrl.vi vd, vs2, uimm, vm # vd[i] = roundoff_unsigned(vs2[i], uimm)

Scaling shift right arithmetic

vssra.vv vd, vs2, vsl, vm # vd[i] = roundoff_signed(vs2[i],vs1[i])
vssra.vx vd, vs2, rsl, vm # vd[i] = roundoff_signed(vs2[i], x[rsil)
vssra.vi vd, vs2, vimm, vm # vd[i] = roundoff_signed(vs2[i], uimm)

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 354

32.12.5. Vector Narrowing Fixed-Point Clip Instructions

The vnclip instructions are used to pack a fixed-point value into a narrower destination. The
instructions support rounding, scaling, and saturation into the final destination format. The source data
is in the vector register group specified by vs2. The scaling shift amount value can come from a vector
register group vsi, a scalar integer register rsi, or a zero-extended 5-bit immediate. The low
lg2(2*SEW) bits of the vector or scalar shift-amount value (e.g., the low 6 bits for a SEW=64-bit to
SEW=32-bit narrowing operation) are used to control the right shift amount, which provides the
scaling.

Narrowing unsigned clip

SEW 2%xSEW SEW
clip(roundoff_unsigned(vs2[i], vs1[il]))
clip(roundoff_unsigned(vs2[i], x[rs1]))
clip(roundoff_unsigned(vs2[i]l, uimm))

vnclipu.wv vd, vs2, vsl, vm # vd[i]
vnclipu.wx vd, vs2, rsl, vm # vd[i]
vnclipu.wi vd, vs2, uimm, vm # vd[i]

Narrowing signed clip

vnclip.wv vd, vs2, vsl, vm # vd[i]
vnclip.wx vd, vs2, rsl, vm vd[i]
vnclip.wi vd, vs2, uvimm, vm # vd[i]

clip(roundoff_signed(vs2[i], vs1[i]))
clip(roundoff_signed(vs2[i], x[rs1]))
clip(roundoff_signed(vs2[i], uimm))

B=S

For vnclipu/vnclip, the rounding mode is specified in the vxrm CSR. Rounding occurs around the least-
significant bit of the destination and before saturation.

For vnclipu, the shifted rounded source value is treated as an unsigned integer and saturates if the
result would overflow the destination viewed as an unsigned integer.

There is no single instruction that can saturate a signed value into an unsigned
destination. A sequence of two vector instructions that first removes negative

0 numbers by performing a max against ® using vmax then clips the resulting unsigned
value into the destination using vnclipu can be used if setting vxsat value for negative
numbers is not required. A vsetvli is required inbetween these two instructions to
change SEW.

For vnclip, the shifted rounded source value is treated as a signed integer and saturates if the result
would overflow the destination viewed as a signed integer.

If any destination element is saturated, the vxsat bit is set in the vxsat register.

32.13. Vector Floating-Point Instructions

The standard vector floating-point instructions treat elements as IEEE-754/2008-compatible values. If
the EEW of a vector floating-point operand does not correspond to a supported IEEE floating-point
type, the instruction encoding is reserved.

Whether floating-point is supported, and for which element widths, is determined by
the specific vector extension. The current set of extensions include support for 32-bit

o and 64-bit floating-point values. When 16-bit and 128-bit element widths are added,
they will be also be treated as IEEE-754/2008-compatible values. Other floating-
point formats may be supported in future extensions.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 355

Vector floating-point instructions require the presence of base scalar floating-point extensions
corresponding to the supported vector floating-point element widths.

o In particular, future vector extensions supporting 16-bit half-precision floating-point
values will also require some scalar half-precision floating-point support.

If the floating-point unit status field mstatus.FS is 0ff then any attempt to execute a vector floating-
point instruction will raise an illegal instruction exception. Any vector floating-point instruction that
modifies any floating-point extension state (i.e., floating-point CSRs or f registers) must set mstatus.FS
to Dirty.

If the hypervisor extension is implemented and V=1, the vsstatus.FS field is additionally in effect for
vector floating-point instructions. If vsstatus.FS or mstatus.FS is 0ff then any attempt to execute a
vector floating-point instruction will raise an illegal instruction exception. Any vector floating-point
instruction that modifies any floating-point extension state (i.e., floating-point CSRs or f registers)
must set both mstatus.FS and vsstatus.FS tO Dirty.

The vector floating-point instructions have the same behavior as the scalar floating-point instructions
with regard to NaNs.

Scalar values for floating-point vector-scalar operations are sourced as described in Section 32.10.1.

32.13.1. Vector Floating-Point Exception Flags

A vector floating-point exception at any active floating-point element sets the standard FP exception
flags in the fflags register. Inactive elements do not set FP exception flags.

32.13.2. Vector Single-Width Floating-Point Add/Subtract Instructions

Floating-point add
vfadd.vv vd, vs2, vsl, vm # Vector-vector
vfadd.vf vd, vs2, rsl, vm # vector-scalar

Floating-point subtract

vfsub.vv vd, vs2, vsl, vm # Vector-vector
vfsub.vf vd, vs2, rsl, vm # Vector-scalar vd[i]
vfrsub.vf vd, vs2, rsl, vm # Scalar-vector vd[i]

vs2[i] - flrs1]
flrsl] - vs2[i]

32.13.3. Vector Widening Floating-Point Add/Subtract Instructions

Widening FP add/subtract, 2*SEW = SEW +/- SEW
vfwadd.vv vd, vs2, vsl, vm # vector-vector
vfwadd.vf vd, vs2, rsl, vm # vector-scalar
vfwsub.vv vd, vs2, vsl, vm # vector-vector
vfwsub.vf vd, vs2, rsl, vm # vector-scalar

Widening FP add/subtract, 2*SEW = 2%SEW +/- SEW
vfwadd.wv vd, vs2, vsl, vm # vector-vector

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 356

vfwadd.wf vd, vs2, rsl, vm # vector-scalar
vfwsub.wv vd, vs2, vsl, vm # vector-vector
vfwsub.wf vd, vs2, rsl, vm # vector-scalar

32.13.4. Vector Single-Width Floating-Point Multiply/Divide Instructions

Floating-point multiply
vfmul.vv vd, vs2, vsl, vm # Vector-vector
vfmul.vf vd, vs2, rsl, vm # vector-scalar

Floating-point divide
vfdiv.vv vd, vs2, vsl, vm # Vector-vector

vfdiv.vf vd, vs2, rsl, vm # vector-scalar

Reverse floating-point divide vector = scalar / vector
vfrdiv.vf vd, vs2, rsl, vm # scalar-vector, vd[i] = f[rs1]/vs2[i]

32.13.5. Vector Widening Floating-Point Multiply

Widening floating-point multiply
vfwmul.vv vd, vs2, vsl, vm # vector-vector
vfwmul.vf vd, vs2, rsl, vm # vector-scalar

32.13.6. Vector Single-Width Floating-Point Fused Multiply-Add Instructions

All four varieties of fused multiply-add are provided, and in two destructive forms that overwrite one of
the operands, either the addend or the first multiplicand.

FP multiply-accumulate, overwrites addend

vfmacc.vv vd, vsl, vs2, vm # vd[i] = +(vs1[i] * vs2[i]) + vd[i]
vfmacc.vf vd, rsl, vs2, vm # vd[i] = +(f[rs1] * vs2[i]) + vd[i]
FP negate-(multiply-accumulate), overwrites subtrahend

vfnmacc.vv vd, vsl, vs2, vm # vd[i] = -(vs1[i] * vs2[i]) - vd[il]
vfnmacc.vf vd, rsl, vs2, vm # vd[i] = -(f[rs1] * vs2[i]) - vd[i]
FP multiply-subtract-accumulator, overwrites subtrahend

vfmsac.vv vd, vsl, vs2, vm # vd[i] = +(vs1[i] * vs2[i]) - vd[i]
vfmsac.vf vd, rsl, vs2, vm # vd[i] = +(f[rs1] * vs2[i]) - vd[i]

FP negate-(multiply-subtract-accumulator), overwrites minuend
vfnmsac.vv vd, vsl, vs2, vm # vd[i] = -(vs1[i] * vs2[i]) + vd[il]
vfnmsac.vf vd, rsl, vs2, vm # vd[i] = -(f[rs1] * vs2[i]) + vd[i]

FP multiply-add, overwrites multiplicand

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 357

vfmadd.vv vd, vsl, vs2, vm # vd[i] = +(vs1[i] * vd[i]l) + vs2[i]
vfmadd.vf vd, rsl, vs2, vm # vd[i] = +(f[rs1] * vd[i]) + vs2[i]
FP negate-(multiply-add), overwrites multiplicand

vfnmadd.vv vd, vsl, vs2, vm # vd[i] = -(vs1[i] * vd[i]) - vs2[i]
vfnmadd.vf vd, rsl, vs2, vm # vd[i] = -(f[rs1] * vd[i]) - vs2[i]
FP multiply-sub, overwrites multiplicand

vfmsub.vv vd, vsl, vs2, vm # vd[i] = +(vs1[i] * vd[i]l) - vs2[i]
vfmsub.vf vd, rsl, vs2, vm # vd[i] = +(f[rs1] * vd[i]) - vs2[i]
FP negate-(multiply-sub), overwrites multiplicand

vfnmsub.vv vd, vsl1, vs2, vm # vd[i] = -(vs1[i] * vd[i]) + vs2[i]
vfnmsub.vf vd, rsl, vs2, vm # vd[i] = -(f[rs1] * vd[i]) + vs2[i]

While we considered using the two unused rounding modes in the scalar FP FMA

0 encoding to provide a few non-destructive FMAs, these would complicate
microarchitectures by being the only maskable operation with three inputs and
separate output.

32.13.7. Vector Widening Floating-Point Fused Multiply-Add Instructions
The widening floating-point fused multiply-add instructions all overwrite the wide addend with the

result. The multiplier inputs are all SEW wide, while the addend and destination is 2*SEW bits wide.

FP widening multiply-accumulate, overwrites addend
vfwmacc.vv vd, vsl, vs2, vm # vd[i] = +(vs1[i] * vs2[i]) + vd[i]
vfwmacc.vf vd, rsl, vs2, vm # vd[i] = +(flrs1] * vs2[i]) + vd[i]

FP widening negate-(multiply-accumulate), overwrites addend
vfwnmacc.vv vd, vsl, vs2, vm # vd[i] = -(vs1[i] * vs2[i]) - vd[il]
vfwnmacc.vf vd, rsl, vs2, vm # vd[i] = -(flrsl] * vs2[i]) - vd[i]

FP widening multiply-subtract-accumulator, overwrites addend
vfwmsac.vv vd, vsl, vs2, vm # vd[i] = +(vs1[i] * vs2[i]) - vd[i]
vfwmsac.vf vd, rsl, vs2, vm # vd[i] = +(flrs1] * vs2[i]) - vd[i]

FP widening negate-(multiply-subtract-accumulator), overwrites addend

vfwnmsac.vv vd, vsl, vs2, vm # vd[i] = -(vs1[i] * vs2[i]) + vd[il]
vfwnmsac.vf vd, rsl, vs2, vm # vd[i] = -(flrsl] * vs2[i]) + vd[i]

32.13.8. Vector Floating-Point Square-Root Instruction

This is a unary vector-vector instruction.

Floating-point square root
vfsqrt.v vd, vs2, vm # Vector-vector square root

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 358

32.13.9. Vector Floating-Point Reciprocal Square-Root Estimate Instruction

Floating-point reciprocal square-root estimate to 7 bits.
vfrsqrt7.v vd, vs2, vm

This is a unary vector-vector instruction that returns an estimate of 1/sqrt(x) accurate to 7 bits.

An earlier draft version had used the assembler name vfrsqrte7 but this was deemed
o to cause confusion with the ex notation for element width. The earlier name can be
retained as alias in tool chains for backward compatibility.

The following table describes the instruction’s behavior for all classes of floating-point inputs:

Input Output Exceptions raised
-0 = x<-0.0 canonical NaN NV
-0.0 -o0 DZ
+0.0 +oo DZ

+0.0 < x <+ estimate of 1/sqrt(x)

+o00 +0.0

gNaN canonical NaN

sNaN canonical NaN NV
o All positive normal and subnormal inputs produce normal outputs.
o The output value is independent of the dynamic rounding mode.

For the non-exceptional cases, the low bit of the exponent and the six high bits of significand (after the
leading one) are concatenated and used to address the following table. The output of the table
becomes the seven high bits of the result significand (after the leading one); the remainder of the
result significand is zero. Subnormal inputs are normalized and the exponent adjusted appropriately
before the lookup. The output exponent is chosen to make the result approximate the reciprocal of the
square root of the argument.

More precisely, the result is computed as follows. Let the normalized input exponent be equal to the
input exponent if the input is normal, or ® minus the number of leading zeros in the significand
otherwise. If the input is subnormal, the normalized input significand is given by shifting the input
significand left by 1 minus the normalized input exponent, discarding the leading 1 bit. The output
exponent equals floor((3*B - 1 - the normalized input exponent) / 2), where B is the exponent bias. The
output sign equals the input sign.

The following table gives the seven MSBs of the output significand as a function of the LSB of the
normalized input exponent and the six MSBs of the normalized input significand; the other bits of the
output significand are zero.

Table 59. vfrsqrt7.v common-case lookup table contents

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 359

exp[®] sig[MSB -: 6] sig_out[MSB -: 7]

@ @0 © © © © 9 © o © © oo o o o o

0

A W N

10
1

12

13

14
15
16
17

18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34

52
51

50
48
47
46
44
43
42
41

40
39
38
36
35
34
33
32
31

30
30
29
28
27
26
25
24
23
23
22
21

20
19

19

18

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 360

exp[®] sig[MSB -: 6] sig_out[MSB -: 7]

o 35 17
o 36 16
0 37 16
0 38 15
0 39 14
® 40 14
o 41 13
o 42 12
0 43 12
o 44 1
0 45 10
o 46 10
o 47 9
0 48 9
0 49 8
0 50 7

o 51 7

o 52 6
o 53 6
0 54 5

o 55 4
o 56 4
o 57 3

o 58 3

0 59 2

o 60 2

o 61 1

o 62 1

0 63 0

1 o 127
1 1 125
1 2 123
1 3 121
1 4 19
1 5 118

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 361

exp[®] sig[MSB -: 6] sig_out[MSB -: 7]

1

1

6

7

10
1

12

13

14
15
16
17

18
19

20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40

116
114
113
11
109
108
106
105
103
102
100
99
97
96
95
93
92
91
90
88
87
86
85
84
83
82
80
79
78
77
76
75
74
73

72

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 362

exp[®] sig[MSB -: 6]

1

1

o For example, when SEW=32, virsqrt7(0x00718abc (= 1.043e-38)) = Ox5f080000 (=
9.800e18), and virsqrt7(0x7f765432 (= 3.274e38)) = Ox1f820000 (= 5.506e-20).

The 7 bit accuracy was chosen as it requires 0,1,2,3 Newton-Raphson iterations to
6 converge to close to bfloat16, FP16, FP32, FP64 accuracy respectively. Future
instructions can be defined with greater estimate accuracy.

41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62

63

sig_out[MSB -: 7]
71
70
70
69
68
67
66
65
64
63
63
62
61
60
59
59
58
57
56
56
55
54
53

32.13.10. Vector Floating-Point Reciprocal Estimate Instruction

Floating-point reciprocal estimate to 7 bits.

vfrec7.v vd, vs2, vm

An earlier draft version had used the assembler name vfrece?7 but this was deemed to
o cause confusion with ex notation for element width. The earlier name can be retained

as alias in tool chains for backward compatibility.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 363

This is a unary vector-vector instruction that returns an estimate of 1/x accurate to 7 bits.

The following table describes the instruction’s behavior for all classes of floating-point inputs, where B
is the exponent bias:

Input (x) Rounding Mode Output (y = 7/x) Exceptions
raised
-o0 any -0.0
-281 < x < -2° (normal) any -2 > y > 28 (subnormal, sig=01...
)
-28 < x = -25" (normal) any -2% > y > -2%" (subnormal, sig=1...)
-2%7 < x < -2°% (normal) any -2 > y > -2%" (normal)
-281 < x < -2® (subnormal, sig=1...) any -257" > y > -28 (normal)
-28 < x < -2°® (subnormal, sig=01...) any -2% > y > -2%" (normal)
-2 < x < -0.0 (subnormal, sig=00... RUP, RTZ greatest-mag. negative finite value NX, OF
)
-2 < x < -0.0 (subnormal, sig=00... RDN, RNE, RMM - NX, OF
)
-0.0 any -oo0 Dz
+0.0 any +o0 DZ
+0.0 < x < 27® (subnormal, sig=00... RUP, RNE, RMM +co NX, OF
)
+0.0 < x < 2" (subnormal, sig=08... RDN, RTZ greatest finite value NX, OF
)
278 < x < 28 (subnormal, sig=01...) any 28415 y > 28 (normal)
2% < x < 2% (subnormal, sig=1...) any 28>y = 25" (normal)
287 < x < 287 (normal) any 257> y = 28 (normal)
25" < x < 28 (normal) any 2815 y > 28 (subnormal, sig=1...)
2% < x < 2% (normal) any 28>y > 28 (subnormal, sig=01...)
+o0 any +0.0
qaNaN any canonical NaN
sNaN any canonical NaN NV

Subnormal inputs with magnitude at least 2®*) produce normal outputs; other
o subnormal inputs produce infinite outputs. Normal inputs with magnitude at least 2%
produce subnormal outputs; other normal inputs produce normal outputs.

e The output value depends on the dynamic rounding mode when the overflow
exception is raised.

For the non-exceptional cases, the seven high bits of significand (after the leading one) are used to
address the following table. The output of the table becomes the seven high bits of the result
significand (after the leading one); the remainder of the result significand is zero. Subnormal inputs
are normalized and the exponent adjusted appropriately before the lookup. The output exponent is

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 364

chosen to make the result approximate the reciprocal of the argument, and subnormal outputs are
denormalized accordingly.

More precisely, the result is computed as follows. Let the normalized input exponent be equal to the
input exponent if the input is normal, or ® minus the number of leading zeros in the significand
otherwise. The normalized output exponent equals (2*B - 1 - the normalized input exponent). If the
normalized output exponent is outside the range [-1, 2*B], the result corresponds to one of the
exceptional cases in the table above.

If the input is subnormal, the normalized input significand is given by shifting the input significand left
by 1 minus the normalized input exponent, discarding the leading 1 bit. Otherwise, the normalized input
significand equals the input significand. The following table gives the seven MSBs of the normalized
output significand as a function of the seven MSBs of the normalized input significand; the other bits
of the normalized output significand are zero.

Table 60. vfrec7.v. common-case lookup table contents

sig[MSB -: 7] sig_out[MSB -: 7]

0 127
1 125
2 123
3 121
4 19
5 117
6 116
7 114
8 112
9 10
10 189
1 187
12 105
13 104
14 102
15 100
16 99
17 97
18 96
19 94
20 93
21 91
22 90
23 88

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 365

sig[MSB -: 7] sig_out[MSB -: 7]

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57

58

87
85
84
83
81

80
79
77
76
75
74
72
71

70
69
68
66
65
64
63
62
61

60
59
58
57
56
55
54
53
52
51

50
49

48

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 366

sig[MSB -: 7] sig_out[MSB -: 7]

59 47
60 46
61 45
62 44
63 43
64 42
65 41

66 40
67 40
68 39
69 38
70 37
71 36
72 35
73 35
74 34
75 33
76 32
77 31

78 31

79 30
80 29
81 28
82 28
83 27
84 26
85 25
86 25
87 24
88 23
89 23
90 22
91 21

92 21

93 20

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 367

sig[MSB -: 7] sig_out[MSB -: 7]

94 19
95 19
96 18
97 17
98 17
99 16
100 15
101 15
102 14
103 14
104 13
105 12
106 12
187 1
108 11
109 10
110 9
111 9
112 8
113 8
114 7
115 7
116 6
117 5
118 5
19 4
120 4
121 3
122 3
123 2
124 2
125 1
126 1
127 o

If the normalized output exponent is ® or -1, the result is subnormal: the output exponent is O, and the

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 368

output significand is given by concatenating a 1 bit to the left of the normalized output significand,
then shifting that quantity right by 1 minus the normalized output exponent. Otherwise, the output
exponent equals the normalized output exponent, and the output significand equals the normalized
output significand. The output sign equals the input sign.

e For example, when SEW=32, vfrec7(0x00718abc (= 1.043e-38)) = Ox7e9200000 (=
9.570e37), and vfrec7(Ox7f765432 (= 3.274e38)) = Ox00214000 (= 3.053e-39).

The 7 bit accuracy was chosen as it requires 0,1,2,3 Newton-Raphson iterations to
o converge to close to bfloat16, FP16, FP32, FP64 accuracy respectively. Future
instructions can be defined with greater estimate accuracy.

32.13.11. Vector Floating-Point MIN/MAX Instructions

The vector floating-point vfmin and vfmax instructions have the same behavior as the corresponding
scalar floating-point instructions in version 2.2 of the RISC-V F/D/Q extension: they perform the
minimumNumber Or maximumNumber operation on active elements.

Floating-point minimum
vfmin.vv vd, vs2, vsl, vm
vfmin.vf vd, vs2, rsl, vm

Floating-point maximum
vfmax.vv vd, vs2, vsl, vm
vfmax.vf vd, vs2, rsl, vm

Vector-vector
vector-scalar

Vector-vector
vector-scalar

32.13.12. Vector Floating-Point Sign-Injection Instructions

Vector versions of the scalar sign-injection instructions. The result takes all bits except the sign bit

from the vector vs2 operands.

vfsgnj.vv vd, vs2, vsl, v
vfsgnj.vf vd, vs2, rsl, v

vfsgnjn.vv vd, vs2, vsl,
vfsgnjn.vf vd, vs2, rsi,

vfsgnjx.vv vd, vs2, vsl,
vfsgnjx.vf vd, vs2, rsl,

m
m

vm
vm

vim
vm

+*

Vector-vector
vector-scalar

B=S

Vector-vector
vector-scalar

+*

=

Vector-vector
vector-scalar

B=S

A vector of floating-point values can be negated using a sign-injection instruction
0 with both source operands set to the same vector operand. An assembly
pseudoinstruction is provided: vfneg.v vd,vs = vfsgnjn.vv vd,vs,vs.

The absolute value of a vector of floating-point elements can be calculated using a
e sign-injection instruction with both source operands set to the same vector operand.
An assembly pseudoinstruction is provided: vfabs.v vd,vs = vfsgnjx.vv vd,vs,vs.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 369
32.13.13. Vector Floating-Point Compare Instructions

These vector FP compare instructions compare two source operands and write the comparison result
to a mask register. The destination mask vector is always held in a single vector register, with a layout
of elements as described in Section 32.4.5. The destination mask vector register may be the same as
the source vector mask register (va). Compares write mask registers, and so always operate under a
tail-agnostic policy.

The compare instructions follow the semantics of the scalar floating-point compare instructions. vmfeq
and vmfne raise the invalid operation exception only on signaling NaN inputs. vmflt, vmfle, vmfgt, and
vmfge raise the invalid operation exception on both signaling and quiet NaN inputs. vmfne writes 1 to the
destination element when either operand is NaN, whereas the other compares write ® when either
operand is NaN.

Compare equal
vmfeq.vv vd, vs2, vsl, vm # Vector-vector
vmfeq.vf vd, vs2, rsl, vm # vector-scalar

Compare not equal
vmfne.vv vd, vs2, vsl, vm # Vector-vector
vmfne.vf vd, vs2, rsl, vm # vector-scalar

Compare less than
vmflt.vv vd, vs2, vsl, vm # Vector-vector
vmflt.vf vd, vs2, rsl, vm # vector-scalar

Compare less than or equal
vmfle.vv vd, vs2, vsl, vm # Vector-vector
vmfle.vf vd, vs2, rsl, vm # vector-scalar

Compare greater than
vmfgt.vf vd, vs2, rsl, vm # vector-scalar

Compare greater than or equal
vmfge.vf vd, vs2, rsl, vm # vector-scalar

Comparison Assembler Mapping Assembler pseudoinstruction
va < vb vmflt.vv vd, va, vb, vm

va <= vb vmfle.vv vd, va, vb, vm

va > vb vmflt.vv vd, vb, va, vm vmfgt.vv vd, va, vb, vm

va >= vb vmfle.vv vd, vb, va, vm vmfge.vv vd, va, vb, vm

va < f vmflt.vf vd, va, f, vm

va <= f vmfle.vf vd, va, f, vm

va > f vmfgt.vf vd, va, f, vm

va >= f vmfge.vf vd, va, f, vm

va, vb vector register groups

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 370

f scalar floating-point register

o Providing all forms is necessary to correctly handle unordered compares for NaNs.

C99 floating-point quiet compares can be implemented by masking the signaling
0 compares when either input is NaN, as follows. When the comparand is a non-NaN
constant, the middle two instructions can be omitted.

Example of implementing isgreater()

vmfeq.vv vO0, va, va # Only set where A is not NaN.
vmfeq.vv vl, vb, vb # Only set where B is not NaN.
vmand.mm v@, vO, vl # Only set where A and B are ordered,

vmfgt.vv vO, va, vb, v0.t # so only set flags on ordered values.

In the above sequence, it is tempting to mask the second vmfeq instruction and
o remove the vmand instruction, but this more efficient sequence incorrectly fails to
raise the invalid exception when an element of va contains a quiet NaN and the
corresponding element in vb contains a signaling NaN.
32.13.14. Vector Floating-Point Classify Instruction
This is a unary vector-vector instruction that operates in the same way as the scalar classify

instruction.

vfclass.v vd, vs2, vm # Vector-vector

The 10-bit mask produced by this instruction is placed in the least-significant bits of the result
elements. The upper (SEW-10) bits of the result are filled with zeros. The instruction is only defined for
SEW=16b and above, so the result will always fit in the destination elements.

32.13.15. Vector Floating-Point Merge Instruction

A vector-scalar floating-point merge instruction is provided, which operates on all body elements from
vstart up to the current vector length in v1 regardless of mask value.

The vfmerge.vfm instruction is encoded as a masked instruction (vm=0). At elements where the mask
value is zero, the first vector operand is copied to the destination element, otherwise a scalar floating-
point register value is copied to the destination element.

vfmerge.vfm vd, vs2, rsl, v0 # vd[i] = vB.mask[i] ? f[rsl] : vs2[i]

32.13.16. Vector Floating-Point Move Instruction

The vector floating-point move instruction splats a floating-point scalar operand to a vector register
group. The instruction copies a scalar f register value to all active elements of a vector register group.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 371

This instruction is encoded as an unmasked instruction (vm=1). The instruction must have the vs2 field
set to ve, with all other values for vs2 reserved.

vfmv.v.f vd, rsl1 # vd[i] = flrsi]

0 The vfmv.v.f instruction shares the encoding with the vfmerge.vfm instruction, but with
vm=1 and vs2=ve.

32.13.17. Single-Width Floating-Point/Integer Type-Convert Instructions

Conversion operations are provided to convert to and from floating-point values and unsigned and

signed integers, where both source and destination are SEW wide.

vfecvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer.
vfevt.x.f.v vd, vs2, vm # Convert float to signed integer.

vfevt.rtz.xu.f.v vd, vs2, vm # Convert float to unsigned integer, truncating.
vfevt.rtz.x.f.v vd, vs2, vm # Convert float to signed integer, truncating.

vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float.
vfecvt.f.x.v vd, vs2, vm # Convert signed integer to float.

The conversions follow the same rules on exceptional conditions as the scalar conversion instructions.
The conversions use the dynamic rounding mode in frm, except for the rtz variants, which round
towards zero.

o The rtz variants are provided to accelerate truncating conversions from floating-point
to integer, as is common in languages like C and Java.
32.13.18. Widening Floating-Point/Integer Type-Convert Instructions

A set of conversion instructions is provided to convert between narrower integer and floating-point
datatypes to a type of twice the width.

vfwevt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned
integer.
vfwevt.x.f.v vd, vs2, vm # Convert float to double-width signed integer.

vfwevt.rtz.xu.f.v vd, vs2, vm # Convert float to double-width unsigned
integer, truncating.

vfwevt.rtz.x.f.v vd, vs2, vm # Convert float to double-width signed integer,
truncating.

vfwevt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width
float.
vfwevt.f.x.v vd, vs2, vm # Convert signed integer to double-width float.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.13. Vector Floating-Point Instructions | Page 372

vfwevt.f.f.v vd, vs2, vm # Convert single-width float to double-width
float.

These instructions have the same constraints on vector register overlap as other widening instructions
(see Section 32.10.2).

o A double-width IEEE floating-point value can always represent a single-width integer
exactly.
o A double-width IEEE floating-point value can always represent a single-width IEEE
floating-point value exactly.

A full set of floating-point widening conversions is not supported as single
o instructions, but any widening conversion can be implemented as several doubling
steps with equivalent results and no additional exception flags raised.

32.13.19. Narrowing Floating-Point/Integer Type-Convert Instructions

A set of conversion instructions is provided to convert wider integer and floating-point datatypes to a
type of half the width.

vfnecvt.xu.f.w vd, vs2, vm # Convert double-width float to unsigned
integer.
vfnevt.x.f.w vd, vs2, vm # Convert double-width float to signed integer.

vfnevt.rtz.xu.f.w vd, vs2, vm # Convert double-width float to unsigned
integer, truncating.

vfnevt.rtz.x.f.w vd, vs2, vm # Convert double-width float to signed integer,
truncating.

vfncvt.f.xu.w vd, vs2, vm # Convert double-width unsigned integer to
float.

vfncvt.f.x.w vd, vs2, vm # Convert double-width signed integer to float.
vfnevt.f.f.w vd, vs2, vm # Convert double-width float to single-width
float.

vfncvt.rod.f.f.w vd, vs2, vm # Convert double-width float to single-width
float,
rounding towards odd.

These instructions have the same constraints on vector register overlap as other narrowing
instructions (see Section 32.10.3).

A full set of floating-point narrowing conversions is not supported as single
instructions. Conversions can be implemented in a sequence of halving steps.

o Results are equivalently rounded and the same exception flags are raised if all but
the last halving step use round-towards-odd (vfncvt.rod.f.f.w). Only the final step
should use the desired rounding mode.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.14. Vector Reduction Operations | Page 373

o For vfnevt.rod.f.f.w, a finite value that exceeds the range of the destination format is
converted to the destination format’s largest finite value with the same sign.

32.14. Vector Reduction Operations

Vector reduction operations take a vector register group of elements and a scalar held in element ® of
a vector register, and perform a reduction using some binary operator, to produce a scalar result in
element ® of a vector register. The scalar input and output operands are held in element ® of a single
vector register, not a vector register group, so any vector register can be the scalar source or
destination of a vector reduction regardless of LMUL setting.

The destination vector register can overlap the source operands, including the mask register.

Vector reductions read and write the scalar operand and result into element ® of a

o vector register instead of a scalar register to avoid a loss of decoupling with the
scalar processor, and to support future polymorphic use with future types not
supported in the scalar unit.

Inactive elements from the source vector register group are excluded from the reduction, but the
scalar operand is always included regardless of the mask values.

The other elements in the destination vector register (© < index < VLEN/SEW) are considered the tail
and are managed with the current tail agnostic/undisturbed policy.

If v1=0, no operation is performed and the destination register is not updated.

This choice of behavior for vi=0 reduces implementation complexity as it is
consistent with other operations on vector register state. For the common case that
the source and destination scalar operand are the same vector register, this behavior
also produces the expected result. For the uncommon case that the source and
o destination scalar operand are in different vector registers, this instruction will not
copy the source into the destination when vi=0. However, it is expected that in most
of these cases it will be statically known that vl is not zero. In other cases, a check
for vi=0 will have to be added to ensure that the source scalar is copied to the
destination (e.qg., by explicitly setting vi=1 and performing a register-register copy).

Traps on vector reduction instructions are always reported with a vstart of ©. Vector reduction
operations raise an illegal instruction exception if vstart is non-zero.

The assembler syntax for a reduction operation is vredop.vs, where the .vs suffix denotes the first
operand is a vector register group and the second operand is a scalar stored in element ® of a vector
register.

32.14.1. Vector Single-Width Integer Reduction Instructions

All operands and results of single-width reduction instructions have the same SEW width. Overflows
wrap around on arithmetic sums.

Simple reductions, where [*] denotes all active elements:
vredsum.vs vd, vs2, vsl, vm # vd[0] sum(vs1[0] , vs2[*])
vredmaxu.vs vd, vs2, vsl, vm # vd[0O] maxu(vs1[0] , vs2[*])

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.14. Vector Reduction Operations | Page 374

vredmax.vs vd, vs2, vsl, vm # vd[0] = max(vs1[0] , vs2[*])
vredminu.vs vd, vs2, vsl, vm # vd[0] = minu(vs1[0] , vs2[*])
vredmin.vs vd, vs2, vsl, vm # vd[0] = min(vs1[0] , vs2[*])
vredand.vs vd, vs2, vsl, vm # vd[B8] = and(vs1[0] , vs2[*])
vredor.vs vd, vs2, vsl, vm # vd[0] = or(vs1[O] , vs2[*])
vredxor.vs vd, vs2, vsl, vm # vd[0] = xor(vs1[0] , vs2[*])

32.14.2. Vector Widening Integer Reduction Instructions

The unsigned vwredsumu.vs instruction zero-extends the SEW-wide vector elements before summing
them, then adds the 2*SEW-width scalar element, and stores the result in a 2*SEW-width scalar
element.

The vwredsum.vs instruction sign-extends the SEW-wide vector elements before summing them.

For both vwredsumu.vs and vwredsum.vs, overflows wrap around.

Unsigned sum reduction into double-width accumulator
vwredsumu.vs vd, vs2, vsl, vm # 2%SEW = 2%SEW + sum(zero-extend(SEW))

Signed sum reduction into double-width accumulator
vwredsum.vs vd, vs2, vsl, vm # 2%SEW = 2%SEW + sum(sign-extend(SEW))

32.14.3. Vector Single-Width Floating-Point Reduction Instructions

Simple reductions.

vfredosum.vs vd, vs2, vsl, vm # Ordered sum
vfredusum.vs vd, vs2, vsl, vm # Unordered sum
vfredmax.vs vd, vs2, vsl, vm # Maximum value
vfredmin.vs vd, vs2, vsl, vm # Minimum value

o Older assembler mnemonic vfredsum is retained as alias for vfredusum.

32.14.3.1. Vector Ordered Single-Width Floating-Point Sum Reduction

The vfredosum instruction must sum the floating-point values in element order, starting with the scalar
in vsi[@8]--that is, it performs the computation:

vd[B] = “(((vsl[B] + vs2[0]) + vs2[1]) + ...) + vs2[vl-1]"

where each addition operates identically to the scalar floating-point instructions in terms of raising
exception flags and generating or propagating special values.

o The ordered reduction supports compiler autovectorization, while the unordered FP
sum allows for faster implementations.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.14. Vector Reduction Operations | Page 375

When the operation is masked (vm=0), the masked-off elements do not affect the result or the exception
flags.

If no elements are active, no additions are performed, so the scalar in vsi[0] is

o simply copied to the destination register, without canonicalizing NaN values and
without setting any exception flags. This behavior preserves the handling of NaNs,
exceptions, and rounding when autovectorizing a scalar summation loop.

32.14.3.2. Vector Unordered Single-Width Floating-Point Sum Reduction

The unordered sum reduction instruction, vfredusum, provides an implementation more freedom in
performing the reduction.

The implementation must produce a result equivalent to a reduction tree composed of binary operator
nodes, with the inputs being elements from the source vector register group (vs2) and the source scalar
value (vs1[e]). Each operator in the tree accepts two inputs and produces one result. Each operator first
computes an exact sum as a RISC-V scalar floating-point addition with infinite exponent range and
precision, then converts this exact sum to a floating-point format with range and precision each at
least as great as the element floating-point format indicated by SEW, rounding using the currently
active floating-point dynamic rounding mode and raising exception flags as necessary. A different
floating-point range and precision may be chosen for the result of each operator. A node where one
input is derived only from elements masked-off or beyond the active vector length may either treat that
input as the additive identity of the appropriate EEW or simply copy the other input to its output. The
rounded result from the root node in the tree is converted (rounded again, using the dynamic rounding
mode) to the standard floating-point format indicated by SEW. An implementation is allowed to add an
additional additive identity to the final result.

The additive identity is +0.0 when rounding down (towards -e) or -0.0 for all other rounding modes.
The reduction tree structure must be deterministic for a given value in vtype and v1l.

As a consequence of this definition, implementations need not propagate NaN
payloads through the reduction tree when no elements are active. In particular, if no

o elements are active and the scalar input is NaN, implementations are permitted to
canonicalize the NaN and, if the NaN is signaling, set the invalid exception flag.
Implementations are alternatively permitted to pass through the original NaN and set
no exception flags, as with vfredosum.

o The vfredosum instruction is a valid implementation of the vfredusum instruction.

32.14.3.3. Vector Single-Width Floating-Point Max and Min Reductions

The vfredmin and vfredmax instructions reduce the scalar argument in vsi[8] and active elements in vs2
using the minimumNumber and maximumNumber operations, respectively.

o Floating-point max and min reductions should return the same final value and raise
the same exception flags regardless of operation order.

o If no elements are active, the scalar in vsi[6] is simply copied to the destination
register, without canonicalizing NaN values and without setting any exception flags.

32.14.4. Vector Widening Floating-Point Reduction Instructions

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.15. Vector Mask Instructions | Page 376

Widening forms of the sum reductions are provided that read and write a double-width reduction
result.

Simple reductions.
vfwredosum.vs vd, vs2, vsl, vm # Ordered sum
vfwredusum.vs vd, vs2, vsl, vm # Unordered sum

0 Older assembler mnemonic vfwredsum is retained as alias for vfwredusum.

The reduction of the SEW-width elements is performed as in the single-width reduction case, with the
elements in vs2 promoted to 2*SEW bits before adding to the 2*SEW-bit accumulator.

0 vfwredosum.vs handles inactive elements and NaN payloads analogously to
vfredosum.vs, vfwredusum.vs does so analogously to vfredusum.vs.

32.15. Vector Mask Instructions

Several instructions are provided to help operate on mask values held in a vector register.

32.15.1. Vector Mask-Register Logical Instructions

Vector mask-register logical operations operate on mask registers. Each element in a mask register is
a single bit, so these instructions all operate on single vector registers regardless of the setting of the
vimul field in vtype. They do not change the value of vimul. The destination vector register may be the
same as either source vector register.

As with other vector instructions, the elements with indices less than vstart are unchanged, and vstart
is reset to zero after execution. Vector mask logical instructions are always unmasked, so there are no
inactive elements, and the encodings with vm=0 are reserved. Mask elements past v1, the tail elements,
are always updated with a tail-agnostic policy.

vmand.mm vd, vs2, vsl # vd.mask[i] = vs2.mask[i] && vsl.mask[i]
vmnand.mm vd, vs2, vsl # vd.mask[i] = !(vs2.mask[i] && vsl.mask[i])
vmandn.mm vd, vs2, vsl # vd.mask[i] = vs2.mask[i] && !vsl.mask[i]
vmxor.mm vd, vs2, vsl # vd.mask[i] = vs2.mask[i] A" vsl.mask[i]
vmor.mm vd, vs2, vsl # vd.mask[i] = vs2.mask[i] || wvsl.mask[i]
vmnor.mm vd, vs2, vsl # vd.mask[i] = !(vs2.mask[i] || wvsl.mask[i])
vmorn.mm vd, vs2, vsl # vd.mask[i] = vs2.mask[i] || !vsl.mask[i]
vmxnor.mm vd, vs2, vsl # vd.mask[i] = !(vs2.mask[i] ~* wvsl.mask[i])

The previous assembler mnemonics vmandnot and vmornot have been changed to

o vmandn and vmorn to be consistent with the equivalent scalar instructions. The old
vmandnot and vmornot mnemonics can be retained as assembler aliases for
compatibility.

Several assembler pseudoinstructions are defined as shorthand for common uses of mask logical
operations:

The RISC-V Instruction Set Manual Volume I | © RISC-V International

vmmv.m vd, vs => vmand.mm vd, vs, VS
vmclr.m vd => vmxor.mm vd, vd, vd
vmset.m vd => vmxnor.mm vd, vd, vd
vmnot.m vd, vs => vmnand.mm vd, vs, Vs

32.15. Vector Mask Instructions | Page 377

Copy mask register
Clear mask register
Set mask register

Invert bits

The vmmv.m instruction was previously called vmcpy.m, but with new layout it is more
consistent to name as a "mv" because bits are copied without interpretation. The
e vmepy.m assembler pseudoinstruction can be retained for compatibility. For
implementations that internally rearrange bits according to EEW, a vmmv.m instruction
with same source and destination can be used as idiom to force an internal reformat

into a mask vector.

The set of eight mask logical instructions can generate any of the 16 possibly binary logical functions

of the two input masks:

inputs
\ Y 1 1 src
Y 1 Y 1 src2
output instruction pseudoinstruction
0]] N vmxor.mm vd, vd, vd vmclr.m vd
1 Y])) vmnor.mm vd, src1, src2
Y 1 Y o vmandn.mm vd, src2, srcl
1 1 Y) vmnand.mm vd, src1, src1 vmnot.m vd, src1
]] 1 o vmandn.mm vd, src1, src2
1 Y 1 0 vmnand.mm vd, src2, src2 vmnot.m vd, src2
Y 1 1) vmxor.mm vd, srcl, src2
1 1 1 o vmnand.mm vd, src1, src2
]]] 1 vmand.mm vd, src1, src2
1]] 1 vmxnor.mm vd, srci, src2
o 1) 1 vmand.mm vd, src2, src2 vmmv.m vd, src2
1 1 Y 1 vmorn.mm vd, src2, srcl
o Y 1 1 vmand.mm vd, src1, srcl vmmv.m vd, srci
1] 1 1 vmorn.mm vd, src1, src2
o 1 1 1 vmor.mm vd, src1, src2
1 1 1 1 vmxnor.mm vd, vd, vd vmset.m vd
The vector mask logical instructions are designed to be easily fused with a following
o masked vector operation to effectively expand the number of predicate registers by

moving values into ve before use.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.15. Vector Mask Instructions | Page 378

32.15.2. Vector count population in mask vcpop.m

vcpop.m rd, vs2, vm

This instruction previously had the assembler mnemonic vpopc.m but was renamed to
0 be consistent with the scalar instruction. The assembler instruction alias vpopc.m IS
being retained for software compatibility.

The source operand is a single vector register holding mask register values as described in Section
32.4.5.

The vcpop.m instruction counts the number of mask elements of the active elements of the vector
source mask register that have the value 1 and writes the result to a scalar x register.

The operation can be performed under a mask, in which case only the masked elements are counted.

vcpop.m rd, vs2, vO.t # x[rd] = sum_i (vs2.mask[i] && vO.mask[i])

The vepop.m instruction writes x[rd] even if v1=0 (with the value ©, since no mask elements are active).

Traps on vcpop.m are always reported with a vstart of ©. The vcpop.m instruction will raise an illegal
instruction exception if vstart is non-zero.

32.15.3. vfirst find-first-set mask bit

vfirst.m rd, vs2, vm

The vfirst instruction finds the lowest-numbered active element of the source mask vector that has
the value 1 and writes that element’s index to a GPR. If no active element has the value 1, -1 is written
to the GPR.

6 Software can assume that any negative value (highest bit set) corresponds to no
element found, as vector lengths will never reach 2***"-" on any implementation.

The vfirst.m instruction writes x[rd] even if v1=0 (with the value -1, since no mask elements are active).

Traps on vfirst are always reported with a vstart of ®. The vfirst instruction will raise an illegal
instruction exception if vstart is non-zero.

32.15.4. vnsbf.m set-before-first mask bit

vmsbf.m vd, vs2, vm
Example

765 43210 Element number

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.15. Vector Mask Instructions | Page 379

10010100 v3 contents
vmsbf.m v2, v3
00000011 v2 contents

10010101 v3 contents
vmsbf.m v2, v3
000000 O0OO v2

O 0o00O0O0BOO0OOD v3 contents
vmsbf.m v2, v3
11111111 v2

11000011 v0 vcontents
10010100 v3 contents

vmsbf.m v2, v3, vO.t
01 xxxx11 v2 contents

The vmsbf.m instruction takes a mask register as input and writes results to a mask register. The
instruction writes a 1 to all active mask elements before the first active source element that is a 1, then
writes a O to that element and all following active elements. If there is no set bit in the active elements
of the source vector, then all active elements in the destination are written with a 1.

The tail elements in the destination mask register are updated under a tail-agnostic policy.

Traps on vmsbf.m are always reported with a vstart of ®. The vmsbf instruction will raise an illegal
instruction exception if vstart is non-zero.

The destination register cannot overlap the source register and, if masked, cannot overlap the mask

register ('v®').

32.15.5. vmsif.m set-including-first mask bit

The vector mask set-including-first instruction is similar to set-before-first, except it also includes the
element with a set bit.

vmsif.m vd, vs2, vm
Example
76543210 Element number
10010100 v3 contents
vmsif.m v2, v3
O OO00O0O1I11 v2 contents
10010101 v3 contents

vmsif.m v2, v3
00000 OB0O1 V2

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.15. Vector Mask Instructions | Page 380

v0 vcontents
v3 contents
vmsif.m v2, v3, vO.t
11 xxxx11 v2 contents

[EENTEN
o R,
o o)
 ©
o o)
 ©
o R,
o R,

The tail elements in the destination mask register are updated under a tail-agnostic policy.

Traps on vmsif.m are always reported with a vstart of ®. The vmsif instruction will raise an illegal
instruction exception if vstart is non-zero.

The destination register cannot overlap the source register and, if masked, cannot overlap the mask
register ('v®').
32.15.6. vnsof.m set-only-first mask bit

The vector mask set-only-first instruction is similar to set-before-first, except it only sets the first
element with a bit set, if any.

vmsof.m vd, vs2, vm
Example
76543210 Element number

10010100 v3 contents
vmsof.m v2, v3
00000100 v2 contents

10010101 v3 contents
vmsof.m v2, v3
00000001 v2

11000011 v0 vcontents
11010100 v3 contents

vmsof.m v2, v3, vO.t
01 xxxx00 v2 contents

The tail elements in the destination mask register are updated under a tail-agnostic policy.

Traps on vmsof.m are always reported with a vstart of ®. The vmsof instruction will raise an illegal
instruction exception if vstart is non-zero.

The destination register cannot overlap the source register and, if masked, cannot overlap the mask
register ('v®').

32.15.7. Example using vector mask instructions

The following is an example of vectorizing a data-dependent exit loop.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.15. Vector Mask Instructions | Page 381

charx strcpy(char *dst, const charx src)

strcpy:
mv a2, a0 # Copy dst
1i to, -1 # Infinite AVL
loop:
vsetvli x0, t0, e8, m8, ta, ma # Max length vectors of bytes
vlie8ff.v v8, (al) # Get src bytes
csrr t1, vl # Get number of bytes fetched
vmseq.vi vl, v8, 0 # Flag zero bytes
vfirst.m a3, vl # Zero found?
add al, al, t1 # Bump pointer
vmsif.m vO, vl # Set mask up to and including zero byte.
vse8.v v8, (a2), vO.t # Write out bytes
add a2, a2, ti # Bump pointer
b1tz a3, loop # Zero byte not found, so loop
ret

char* strncpy(char *dst, const charx src, size_t n)

strncpy:
mv a3, a0 # Copy dst
loop:
vsetvli x0, a2, e8, m8, ta, ma # Vectors of bytes.
vie8ff.v v8, (al) # Get src bytes
vmseq.vi vl, v8, 0O # Flag zero bytes
csrr t1, vl # Get number of bytes fetched
vfirst.m a4, vi # Zero found?
vmsbf.m vO, vl # Set mask up to before zero byte.
vse8.v v8, (a3), vO.t # Write out non-zero bytes
bgez a4, zero_tail # Zero remaining bytes.
sub a2, a2, ti # Decrement count.
add a3, a3, ti # Bump dest pointer
add al, al, ti # Bump src pointer
bnez a2, loop # Anymore?
ret
zero_tail:
sub a2, a2, a4 # Subtract count on non-zero bytes.
add a3, a3, a4 # Advance past non-zero bytes.
vsetvli t1, a2, e8, m8, ta, ma # Vectors of bytes.
vmv.v.1i vO, O # Splat zero.
zero_loop:
vse8.v v0O, (a3) # Store zero.
sub a2, a2, ti # Decrement count.
add a3, a3, ti # Bump pointer
vsetvli t1, a2, e8, m8, ta, ma # Vectors of bytes.
bnez a2, zero_loop # Anymore?

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.15. Vector Mask Instructions | Page 382

ret

32.15.8. Vector Iota Instruction

The viota.m instruction reads a source vector mask register and writes to each element of the
destination vector register group the sum of all the bits of elements in the mask register whose index
is less than the element, e.g., a parallel prefix sum of the mask values.

This instruction can be masked, in which case only the enabled elements contribute to the sum.

viota.m vd, vs2, vm
Example
76543210 Element number

10010001 v2 contents
viota.m v4, v2 # Unmasked
22211110 v4 result

11101011 v@ contents
10010001 v2 contents
2345617829 v4 contents
viota.m v4, v2, v0.t # Masked, vtype.vma=0
11151716¢0 v4 results

The result value is zero-extended to fill the destination element if SEW is wider than the result. If the
result value would overflow the destination SEW, the least-significant SEW bits are retained.

Traps on viota.m are always reported with a vstart of ®, and execution is always restarted from the
beginning when resuming after a trap handler. An illegal instruction exception is raised if vstart is
non-zero.

The destination register group cannot overlap the source register and, if masked, cannot overlap the
mask register (ve).

The viota.m instruction can be combined with memory scatter instructions (indexed stores) to perform
vector compress functions.

Compact non-zero elements from input memory array to output memory array
#

size_t compact_non_zero(size_t n, const int* in, int* out)

#{

size_t i;

size_t count = 0;

int *p = out;

#

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.15. Vector Mask Instructions | Page 383

for (i=0; i<n; i++)

A

const int v = *in++;
if (v !'=0)

*p++ = V;

}

#

return (size_t) (p - out);
}

#

a0 = n

al = &in

a2 = &out

compact_non_zero:
1i a6, 0 # Clear count of non-zero elements
loop:
vsetvli a5, a0, e32, m8, ta, ma # 32-bit integers
vlie32.v v8, (al) Load input vector
sub a0, a0, a5 Decrement number done
s1li a5, a5, 2 Multiply by four bytes
vmsne.vi v0@, v8, 0O Locate non-zero values
add al, al, a5 Bump input pointer
vcpop.m a5, vO Count number of elements set in vO
viota.m v16, vO Get destination offsets of active elements
add a6, a6, as Accumulate number of elements
vsll.vi v16, vié, 2, vO.t Multiply offsets by four bytes
s1li a5, a5, 2 Multiply number of non-zero elements by
four bytes
vsuxei32.v v8, (a2), v16, vO.t # Scatter using scaled viota results under
mask

H oH OB HF OH OB OH B B R

add a2, a2, aS # Bump output pointer
bnez a0, loop # Any more?

mv a@, aé # Return count

ret

32.15.9. Vector Element Index Instruction

The vid.v instruction writes each element’s index to the destination vector register group, from © to vt
-1.

vid.v vd, vm # Write element ID to destination.

The instruction can be masked. Masking does not change the index value written to active elements.

The vs2 field of the instruction must be set to ve, otherwise the encoding is reserved.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.16. Vector Permutation Instructions | Page 384

The result value is zero-extended to fill the destination element if SEW is wider than the result. If the
result value would overflow the destination SEW, the least-significant SEW bits are retained.

o Microarchitectures can implement vid.v instruction using the same datapath as
viota.m but with an implicit set mask source.
32.16. Vector Permutation Instructions

A range of permutation instructions are provided to move elements around within the vector registers.

32.16.1. Integer Scalar Move Instructions
The integer scalar read/write instructions transfer a single value between a scalar x register and

element O of a vector register. The instructions ignore LMUL and vector register groups.

vs2[0] (vs1=0)
x[rsl] (vs2=0)

vmv.x.s rd, vs2 # x[rd]
vmv.s.x vd, rsl # vd[0]

The vmv.x.s instruction copies a single SEW-wide element from index ® of the source vector register to
a destination integer register. If SEW > XLEN, the least-significant XLEN bits are transferred and the
upper SEW-XLEN bits are ignored. If SEW < XLEN, the value is sign-extended to XLEN bits.

o vmv.x.s performs its operation even if vstart = vl or v1=0.

The vmv.s.x instruction copies the scalar integer register to element ® of the destination vector
register. If SEW < XLEN, the least-significant bits are copied and the upper XLEN-SEW bits are
ignored. If SEW > XLEN, the value is sign-extended to SEW bits. The other elements in the destination
vector register (® < index < VLEN/SEW) are treated as tail elements using the current tail
agnostic/undisturbed policy. If vstart = v1, no operation is performed and the destination register is
not updated.

o As a consequence, when v1=0, no elements are updated in the destination vector
register group, regardless of vstart.

The encodings corresponding to the masked versions (vm=0) of vmv.x.s and vmv.s.x are reserved.

32.16.2. Floating-Point Scalar Move Instructions

The floating-point scalar read/write instructions transfer a single value between a scalar f register and
element O of a vector register. The instructions ignore LMUL and vector register groups.

vfmv.f.s rd, vs2 # flrd]
vfmv.s.f vd, rsl # vd[0O]

vs2[0] (rs1=0)
flrsl] (vs2=0)

The vfmv.f.s instruction copies a single SEW-wide element from index O of the source vector register
to a destination scalar floating-point register.

o vfmv.f.s performs its operation even if vstart = vl or vi=0.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.16. Vector Permutation Instructions | Page 385

The vfmv.s.f instruction copies the scalar floating-point register to element ® of the destination vector
register. The other elements in the destination vector register (® < index < VLEN/SEW) are treated as
tail elements using the current tail agnostic/undisturbed policy. If vstart = v1, no operation is
performed and the destination register is not updated.

e As a consequence, when vi1=0, no elements are updated in the destination vector
register group, regardless of vstart.

The encodings corresponding to the masked versions (vm=0) of vfmv.f.s and vfmv.s.f are reserved.

32.16.3. Vector Slide Instructions
The slide instructions move elements up and down a vector register group.

The slide operations can be implemented much more efficiently than using the

o arbitrary register gather instruction. Implementations may optimize certain OFFSET
values for vslideup and vslidedown. In particular, power-of-2 offsets may operate
substantially faster than other offsets.

For all of the vslideup, vslidedown, v[flslidelup, and v[f]slideldown instructions, if vstart = v1, the
instruction performs no operation and leaves the destination vector register unchanged.

6 As a consequence, when v1=0, no elements are updated in the destination vector
register group, regardless of vstart.

The tail agnostic/undisturbed policy is followed for tail elements.

The slide instructions may be masked, with mask element i controlling whether destination element i is
written. The mask undisturbed/agnostic policy is followed for inactive elements.

32.16.3.1. Vector Slideup Instructions

vslideup.vx vd, vs2, rsl, vm # vd[i+x[rs1]] = vs2[il]
vslideup.vi vd, vs2, uimm, vm # vd[i+uimm] = vs2[i]

For vstlideup, the value in v1 specifies the maximum number of destination elements that are written.
The start index (OFFSET) for the destination can be either specified using an unsigned integer in the x
register specified by rsi1, or a 5-bit immediate, zero-extended to XLEN bits. If XLEN > SEW, OFFSET is
not truncated to SEW bits. Destination elements OFFSET through vi-1 are written if unmasked and if
OFFSET < vl

vslideup behavior for destination elements (vstart™ < "vl1')
OFFSET is amount to slideup, either from x register or a 5-bit immediate

0 <= i < min(vl, max(vstart, OFFSET)) Unchanged

max(vstart, OFFSET) <= i < vl vd[i] = vs2[i-0FFSET]
if vO.mask[i] enabled
vl <= i < VLMAX Follow tail policy

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.16. Vector Permutation Instructions | Page 386

The destination vector register group for vslideup cannot overlap the source vector register group,
otherwise the instruction encoding is reserved.

o The non-overlap constraint avoids WAR hazards on the input vectors during
execution, and enables restart with non-zero vstart.

32.16.3.2. Vector Slidedown Instructions

vs2[i+x[rs1]]
vs2[i+uimm]

vslidedown.vx vd, vs2, rsl, vm # vd[i]
vslidedown.vi vd, vs2, uimm, vm # vd[i]

For vstlidedown, the value in v1 specifies the maximum number of destination elements that are written.
The remaining elements past vl are handled according to the current tail policy (Section 32.3.4.3).

The start index (OFFSET) for the source can be either specified using an unsigned integer in the x
register specified by rsi, or a 5-bit immediate, zero-extended to XLEN bits. If XLEN > SEW, OFFSET is
not truncated to SEW bits.

vslidedown behavior for source elements for element i in slide (‘vstart® <
“vi')

0 <= i+0FFSET < VLMAX src[i]
VLMAX <= i+O0FFSET srcl[i]

vs2[i+0FFSET]
0

vslidedown behavior for destination element i in slide (‘vstart™ < “vl1°)

0 <= i < vstart Unchanged
vstart <= i < vl vd[i] = src[i] if vB@.mask[i] enabled
vl <= i < VLMAX Follow tail policy

32.16.3.3. Vector Slidelup

Variants of slide are provided that only move by one element but which also allow a scalar integer
value to be inserted at the vacated element position.

vslidelup.vx vd, vs2, rsl, vm # vd[0]=x[rs1], vd[i+1] = vs2[i]

The vslidelup instruction places the x register argument at location © of the destination vector register
group, provided that element ® is active, otherwise the destination element update follows the current
mask agnostic/undisturbed policy. If XLEN < SEW, the value is sign-extended to SEW bits. If XLEN >
SEW, the least-significant bits are copied over and the high XLEN-SEW bits are ignored.

The remaining active vi-1 elements are copied over from index i in the source vector register group to
index i+1 in the destination vector register group.

The v register specifies the maximum number of destination vector register elements updated with
source values, and remaining elements past vi are handled according to the current tail policy (Section
32.3.4.3).

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.16. Vector Permutation Instructions | Page 387

vslidelup behavior when vl > 0

i < vstart wunchanged
0 = i = vstart vd[i] = x[rsl] if vO@.mask[i] enabled
max(vstart, 1) <= i < vl vd[i] = vs2[i-1] if vB@.mask[i] enabled
vl <= i < VLMAX Follow tail policy

The vslidelup instruction requires that the destination vector register group does not overlap the
source vector register group. Otherwise, the instruction encoding is reserved.

32.16.3.4. Vector Floating-Point Slide1up Instruction

vfslidelup.vf vd, vs2, rsl, vm # vd[0]=Ff[rs1], vd[i+1] = vs2[i]

The vfslidelup instruction is defined analogously to vslidelup, but sources its scalar argument from an
f register.

32.16.3.5. Vector Slideldown Instruction

The vslideldown instruction copies the first vi-1 active elements values from index i+1 in the source
vector register group to index i in the destination vector register group.

The v1 register specifies the maximum number of destination vector register elements written with
source values, and remaining elements past vi are handled according to the current tail policy (Section
32.3.4.3).

vslideldown.vx vd, vs2, rsl, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rsi]

The vslideldown instruction places the x register argument at location vi-1 in the destination vector
register, provided that element vi-1 is active, otherwise the destination element update follows the
current mask agnostic/undisturbed policy. If XLEN < SEW, the value is sign-extended to SEW bits. If
XLEN > SEW, the least-significant bits are copied over and the high SEW-XLEN bits are ignored.

vslideldown behavior

i < vstart wunchanged
vstart <= i < vl1-1 vd[i] = vs2[i+1] if v@.mask[i] enabled
vstart <= i = vl1-1 vd[vl-1] = x[rs1] if vO@.mask[i] enabled
vl <= i < VLMAX Follow tail policy

The vslideldown instruction can be used to load values into a vector register without

o using memory and without disturbing other vector registers. This provides a path for
debuggers to modify the contents of a vector register, albeit slowly, with multiple
repeated vslideldown invocations.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.16. Vector Permutation Instructions | Page 388

32.16.3.6. Vector Floating-Point Slide1down Instruction

vfslideldown.vf vd, vs2, rsl, vm # vd[i] = vs2[i+1], vd[vl-1]=f[rsi]

The vfslideldown instruction is defined analogously to vstlideldown, but sources its scalar argument from
an f register.

32.16.4. Vector Register Gather Instructions

The vector register gather instructions read elements from a first source vector register group at
locations given by a second source vector register group. The index values in the second vector are
treated as unsigned integers. The source vector can be read at any index < VLMAX regardless of vi.
The maximum number of elements to write to the destination register is given by vt, and the remaining
elements past v are handled according to the current tail policy (Section 32.3.4.3). The operation can
be masked, and the mask undisturbed/agnostic policy is followed for inactive elements.

(vs1[i] >= VLMAX) ? 0 : vs2[vsli[i]];
(vs1[i] >= VLMAX) ? 0 : vs2[vsl1[i]];

vrgather.vv vd, vs2, vsl, vm # vd[i]
vrgathereilé.vv vd, vs2, vsl, vm # vd[i]

The vrgather.vv form uses SEW/LMUL for both the data and indices. The vrgathereilé.vv form uses
SEW/LMUL for the data in vs2 but EEW=16 and EMUL = (16/SEW)*LMUL for the indices in vs1.

When SEW=8, vrgather.vv can only reference vector elements 0-255. The
0 vrgathereilé form can index 64K elements, and can also be used to reduce the
register capacity needed to hold indices when SEW > 16.

If an element index is out of range (vs1[i] = VLMAX) then zero is returned for the element value.

Vector-scalar and vector-immediate forms of the register gather are also provided. These read one
element from the source vector at the given index, and write this value to the active elements of the
destination vector register. The index value in the scalar register and the immediate, zero-extended to
XLEN bits, are treated as unsigned integers. If XLEN > SEW, the index value is not truncated to SEW
bits.

o These forms allow any vector element to be "splatted" to an entire vector.

(x[rs1] >= VLMAX) ? 0 : vs2[x[rsl1]]
(uimm >= VLMAX) ? 0 : vs2[uimm]

vrgather.vx vd, vs2, rsl, vm # vd[i]
vrgather.vi vd, vs2, uvimm, vm # vd[i]

For any vrgather instruction, the destination vector register group cannot overlap with the source vector
register groups, otherwise the instruction encoding is reserved.
32.16.5. Vector Compress Instruction

The vector compress instruction allows elements selected by a vector mask register from a source
vector register group to be packed into contiguous elements at the start of the destination vector
register group.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

vcompress.vm vd, vs2,
enabled

32.16. Vector Permutation Instructions | Page 389

vsl # Compress into vd elements of vs2 where vsl is

The vector mask register specified by vsi1 indicates which of the first vi elements of vector register
group vs2 should be extracted and packed into contiguous elements at the beginning of vector register
vd. The remaining elements of vd are treated as tail elements according to the current tail policy

(Section 32.3.4.3).

Example use of vcompress instruction

876543210 Element number

110100101
876543210
1234567829

123487520 v2

vO
vl
v2

vsetivli t0, 9, e8, ml, tu, ma
vcompress.vm v2, vl, vO

vcompress is encoded as an unmasked instruction (vm=1). The equivalent masked instruction (vm=g) is

reserved.

The destination vector register group cannot overlap the source vector register group or the source
mask register, otherwise the instruction encoding is reserved.

A trap on a vcompress instruction is always reported with a vstart of ®. Executing a vcompress instruction
with a non-zero vstart raises an illegal instruction exception.

Although possible, vcompress is one of the more difficult instructions to restart with a

o non-zero vstart, SO assumption is implementations will choose not do that but will
instead restart from element ®. This does mean elements in destination register
after vstart will already have been updated.

32.16.5.1. Synthesizing vdecompress

There is no inverse vdecompress provided, as this operation can be readily synthesized using iota and a

masked vrgather:

Desired functionality

7654321080 #

edcba #
10011101 #
pgrstuvw #
egrdcbyva #

of 'vdecompress'

vid

packed vector of 5 elements
mask vector of 8 elements

destination register before vdecompress

result of vdecompress

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.16. Vector Permutation Instructions | Page 390

vO holds mask

vl holds packed data

v11 holds input expanded vector and result

viota.m v10, vO # Calc iota from mask in vO
vrgather.vv v11, v1, v10, v0.t # Expand into destination

pgrstuvw # vl1l destination register
vl source vector
10011101 # v0O mask vector

o
(=
Q

=

4 4 4
eqr

w
=
=
H*

v10 result of viota.m
vll destination after vrgather using viota.m under mask

o
(=
=

32.16.6. Whole Vector Register Move

The vmv<nr>r.v instructions copy whole vector registers (i.e., all VLEN bits) and can copy whole vector
register groups. The nr value in the opcode is the number of individual vector registers, NREG, to copy.
The instructions operate as if EEW=SEW, EMUL = NREG, effective length evi= EMUL * VLEN/SEW.

These instructions are intended to aid compilers to shuffle vector registers without
needing to know or change v1.

The usual property that no elements are written if vstart = vl does not apply to these
instructions. Instead, no elements are written if vstart = evl

If vd is equal to vs2 the instruction is an architectural NOP, but is treated as a hint to
o implementations that rearrange data internally that the register group will next be
accessed with an EEW equal to SEW.

The instruction is encoded as an OPIVI instruction. The number of vector registers to copy is encoded
in the low three bits of the simm field (simm[2:8]) using the same encoding as the nf[2:0] field for
memory instructions (Figure Table 57), i.e., simm[2:0] = NREG-1.

The value of NREG must be 1, 2, 4, or 8, and values of simm[4:8] other than O, 1, 3, and 7 are reserved.
o A future extension may support other numbers of registers to be moved.

The instruction uses the same funct6 encoding as the vsmul instruction but with an

e immediate operand, and only the unmasked version (vm=1). This encoding is chosen
as it is close to the related vmerge encoding, and it is unlikely the vsmul instruction
would benefit from an immediate form.

vmv<nr>r.v vd, vs2 # General form
vmvlr.v vl, v2 # Copy vil=v2

vmv2r.v v10, v12 # Copy v10=v12; v11=v13
vmvar.v v4, v8 # Copy v4=v8; v5=v9; vb6=v10; v7=vil

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.17. Exception Handling | Page 391

vmv8r.v v0, v8 # Copy vB=v8; vi1=v9; ...; v7=vl15

The source and destination vector register numbers must be aligned appropriately for the vector
register group size, and encodings with other vector register numbers are reserved.

o A future extension may relax the vector register alignment restrictions.

32.17. Exception Handling

On a trap during a vector instruction (caused by either a synchronous exception or an asynchronous
interrupt), the existing *epc CSR is written with a pointer to the trapping vector instruction, while the
vstart CSR contains the element index on which the trap was taken.

We chose to add a vstart CSR to allow resumption of a partially executed vector
instruction to reduce interrupt latencies and to simplify forward-progress guarantees.
This is similar to the scheme in the IBM 3090 vector facility. To ensure forward

0 progress without the vstart CSR, implementations would have to guarantee an entire
vector instruction can always complete atomically without generating a trap. This is
particularly difficult to ensure in the presence of strided or scatter/gather operations
and demand-paged virtual memory.

32.17.1. Precise vector traps

o We assume most supervisor-mode environments with demand-paging will require
precise vector traps.

Precise vector traps require that:

1. all instructions older than the trapping vector instruction have committed their results
2. no instructions newer than the trapping vector instruction have altered architectural state

3. any operations within the trapping vector instruction affecting result elements preceding the index
in the vstart CSR have committed their results

4. no operations within the trapping vector instruction affecting elements at or following the vstart
CSR have altered architectural state except if restarting and completing the affected vector
instruction will nevertheless produce the correct final state.

We relax the last requirement to allow elements following vstart to have been updated at the time the
trap is reported, provided that re-executing the instruction from the given vstart will correctly overwrite
those elements.

In idempotent memory regions, vector store instructions may have updated elements in memory past
the element causing a synchronous trap. Non-idempotent memory regions must not have been
updated for indices equal to or greater than the element that caused a synchronous trap during a
vector store instruction.

Except where noted above, vector instructions are allowed to overwrite their inputs, and so in most
cases, the vector instruction restart must be from the vstart element index. However, there are a
number of cases where this overwrite is prohibited to enable execution of the vector instructions to be
idempotent and hence restartable from an earlier index location.

The RISC-V Instruction Set Manual Volume I | © RISC-V International

32.18. Standard Vector Extensions | Page 392

Implementations must ensure forward progress can be eventually guaranteed for the element or
segment reported by vstart.

32.17.2. Imprecise vector traps

Imprecise vector traps are traps that are not precise. In particular, instructions newer than *epc may
have committed results, and instructions older than xepc may have not completed execution. Imprecise
traps are primarily intended to be used in situations where reporting an error and terminating
execution is the appropriate response.

A profile might specify that interrupts are precise while other traps are imprecise. We
o assume many embedded implementations will generate only imprecise traps for
vector instructions on fatal errors, as they will not require resumable traps.

Imprecise traps shall report the faulting element in vstart for traps caused by synchronous vector
exceptions.

There is no support for imprecise traps in the current standard extensions.

32.17.3. Selectable precise/imprecise traps

Some profiles may choose to provide a privileged mode bit to select between precise and imprecise
vector traps. Imprecise mode would run at high-performance but possibly make it difficult to discern
error causes, while precise mode would run more slowly, but support debugging of errors albeit with a
possibility of not experiencing the same errors as in imprecise mode.

This mechanism is not defined in the current standard extensions.

32.17.4. Swappable traps

Another trap mode can support swappable state in the vector unit, where on a trap, special instructions
can save and restore the vector unit microarchitectural state, to allow execution to continue correctly
around imprecise traps.

This mechanism is not defined in the current standard extensions.

A future extension might define a standard way of saving and restoring opaque
o microarchitectural state from a vector unit implementation to support c